Chapter 8

Exercise 8A

1. No working required.

2.

(a) k®=4sok=2and T =% =r.
(b) k*=1sok=1and T = 2% = 2r.
(c) k*=25s0ok=5and T = 2% = 0.47.
(a) T = 2% = 4w so k= 0.5 and z = sin 0.5¢.
(b) & = —sin0.5¢
(¢c) T=2 =7sok=2and z =3sin2t.
(d) T=22=2s0k=mand z = —0.5sinnt.
(a) T=2F=msok=2and z=2cos2t.
(b) T =22 =057 so k=4 and z = 1.5cos 4.
(¢c) T=22 =0.5s0k =4m and z = 0.5 cos 4rt.
(a) T=2" =msok=2andz=25sin2t or
x = —2.5sin 2t (depending on the direction
of the motion at time ¢ = 0).
dx
b) v=—
(b) v= o
= 5cos2t
7T
:5 I —
cos
=2.5ms™!
(a) 2 = 5cos bt + 3sin 5t
= rsin(5t + )
where rsina =5
rcosa =3
r? =5+ 3

Hence the amplitude is v34m. (We could
proceed to find the phase angle o but this
is not requested by the question.)

Period T' = %’r = 0.47s.

(b) Amplitude is v/3%2 + 72 = v/58m. (You can
use the approach in part (a) above, but you
should probably remember the general re-
sult for questions like this.)

Period T' = 27” = Ts.

(a) To prove: & = —k%x
Proof:

Taking k = 75 this gives & = —k*z. O
(In my opinion the wording of this question
is a little unclear. Since it might well be
reasonable to define simple harmonic mo-
tion as x = asin(kt 4+ ¢), the proof could
be so trivial as to be non-existant. In or-
der to proceed, I have taken the question
to mean that we are required to prove that
the motion satisfies the differential equation
definition of SHM.)

The period of the motion is T = 27 X 1770 =
20s.

Amplitude is 4m.

In the first two seconds the movement is
all in the same direction and the distance
moved is

d=xz(2) — x(0)
= 4sin il
5
~ 2.35m

If using technology, it’s probably simpler to
take a definite integral of the absolute value
of the velocity over the given interval:

: i B
Define f(t)—49n(1a)

done
3
ﬂlcf(t))‘dr
ar
B
2.351141089

With this approach there is no need to first
analyse whether the object changes direc-
tion during the interval under consideration:
the absolute value takes care of that. Be
warned, however, that handheld technology
may take longer than a few seconds to eval-
uate this.

To prove: & = —k%x
Proof:

I
Q
g
|

|
|
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TR
b
2.
=}
vl
~

Taking k = % this gives & = —k?x. O
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Solutions to A.J. Sadler’s

(b)

()

The period of the motion is 7' = 27 x 2 =
6s.

Amplitude is 2m.
In the first two seconds the movement is

not all in the same direction so the distance
moved must be determined in two parts.

Fromt=0tot = % = 1.5 seconds the body
moves through its amplitude: 2m.

From ¢t = 1.5 to t = 2 seconds the body
moves back to £ = 2sin 2?” = \/3, thus mov-

ing through a further distance of 2 — v/3m.
Hence the total distance moved is

d=(2)+(2-V3)
=(4-V3)m

(See the note to the previous question about
using technology.)

To prove: & = —k2x
Proof:

&= %35111 (2t + %)

T
—6 (Qt 7)
cos + 6
d
T = aGcos (2t + %)

— _12sin (Qt T %)

— 4 (3sin (2t + %))

=22y

Taking k = 2 this gives & = —k2x. O

27

The period of the motion is 7' = =

= TS.

Amplitude is 3m.

The body first reaches maximum displace-
ment when

351n(2t+%) —3
s s

ot T _T

t6 T2

s

ot =T

3

==

6

From ¢ = 0to ¢ = § seconds the body moves

d=3— 3sin (2(0)+ %)

= 1.5m

From ¢ = % tot = 1 seconds the body moves
a further

d=3-3sin (201) + 7 )

6
~ 1.26m (2d.p.)

Hence the total distance moved is

d=15+1.26
= 2.76m (2d.p.)

If using technology:

Define f<r>=3sin(2r+§>

done

1
d_
\£|dt(f<t))|dt

2.761796241
0

10. (a) x = asin(kt + «)
a=4
2m
—=2
k=m
2 =4sin(7(0) + «)
. 1
sina = 5
T
“T%
5w
or a=--
dx
YT
= 47 cos(mt + )
When t = 0,
v =4mcos
om .
a= & (to make v negative)
T = 4sin <7rt + 571-)
6
(b) v = 47 cos <7rt + 5%

)

= 4 cos <7T + 51
6 6

=4mwcosm

= —4rms!

- speed = d7rms™ !
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11. (a) x = asin(kt + «)
a=2
2r 27w
k5
k=5

V2 = 2sin(5(0) + a)

= 10cos(5t + )
When t =0,

v = 10cos «

7
a= (to make v positive)

T
o)
T sm5+4

(b) v=10cos (5t + Z) which has an amplitude
of 10ms~! so the greatest speed is 10ms~?.

_d
Cdt

= —50sin (5t + %)

(c) a

This has an amplitude of 50ms~2 so the

maximum accelleration is 50ms~2.

12. i = -k
= —4dx
k=2
x = 0.6sin 2¢
2
(a) 2 = 0.6sin %
T
= 0.6sin —
sin 3
=0.3v3m
2
(b) x = 0.6sin g
= —-0.3v/3m
(c) |z] = 0.3
r==10.3
0.6sin2t = £0.3
sin 2t = 0.5

666 6

m 57 7w 1llw
20 =, —, —, —, ...

{71' 57 7n 11w

127127127 1277
1. t:%s
ii. t=2Zs
iii. t = Zg

12

}

13. i =k
=712z
=7
r = —3sinmnt
T
= —3 3 —_—
(a) x sin
3V3
= ——m
2
dx
b = —
(b) V=
= —3mwcost
when t = —,
v = —37Ccos —
= —3—7rmsf1
2
(c) speed= [v] = 2F ms™!
3T
d —
(@) ol = 5
p i
T2
3
—3mcoswt = j:E7T
cosmt = £0.5
S L
373737377

‘e 1245
3737337

The body next has the same speed it had at

_ 1, — 24
t = gs when t = $s.

-3 0 1 2 3
14. A B C D E

Without loss of generality, suppose that the par-

ticle is at point A when ¢t = 0. Then

xr = —3coskt
2 _
3 =
k=2
r = —3cos2t
(a) r=1
—3cos2t =1
cos 2t = 71
3
‘P cos™!—1
2
=0.9553..
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Solutions to A.J. Sadler’s

15.

(b) x=2
—3cos2t =2
cos 2t = —g
3
L cos™! -2
2
=1.1503...
1.1503 — 0.9553 = 0.1949
~ 0.19s
(c) x=3
—3cos2t =3
cos2t = —1
T
=3
= 1.5708...
1.5708 — 1.1503 = 0.4205
~ 0.42s

Check: the total times from A to E should
be half the period: 5 =~ 1.57s—

0.96 + 0.19 + 0.42 = 1.57

(d) If the particle is moving left-to-right when it
passes D, the time to get back to D is double
the time needed to go from D to E (since it
moves from D to E and back again, and the
symmetry makes these times DE and ED
equal):

t =2 x 0.4205
= 0.84s

If the particle is moving right-to-left when
it passes D, the time to get back to D again
is a whole period less the D-E-D time, i.e.

t=m—0.84
~ 2.30s

|3

i i 5 !
14 8

24

Find the time the body first reaches 1.5m away
from the mean position O and determine the
length of time between that point and when it
reaches maximum displacement. Then use the
symmetry of the sine curve to determine the to-

tal time.
2sin4t = 1.5
sin4t = 0.75
4t = sint 0.75
sin™ 0.75
N 4
~ 0.212
T
— —t~0.181
8
0.181 x 4~ 0.72s
16. i = -k
T = —4x
k=2
x = asin(2t + «)
vV=2=T
= 2acos(2t + «)

(a) x = asin(2t + «)
0=asina
a=10
v = 2acos(2t + )
4 =2acos0
a=2
T = 2sin 2t

(b) v =2acos(2t + @)
0 =2acos«

T
a=—
2
x = asin(2t + «)
4 = qgsin T
a=4
T = 4sin (215 + z)
2
=4cos2t

17. (a) Since the mass is at rest 2cm below equilib-
rium the amplitude of its motion is 2cm.

(b) k* = 64
k=38
. 27
period = T
_ T
4

(c) This represents a quarter of a full cycle and
takes a quarter of the period, i.e. 7 s.

(d) The mass is at maximum speed when pass-
ing through the equilibrium point, so its
speed is

s = |kal
=8x2
= 16cm/s
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18.

19.

()

(a)

(b)

T = —2cos8t

v = 16sin 8t
16sin8t = 8
1
W1 8t —_ —
sin >
T
8t = —
6
. s

=—3s

48

= —4v3sin0 — 4cos0
=—4
The object is 4m from O.
To prove:
i =—kx

Proof:

x = —4V3sin 2t — 4 cos 2t

i = —8v/3cos 2t + 8sin 2t

& = 16v/3sin 2t + 16 cos 2t
= —4(—4V/3sin 2t — 4 cos 2t)
= 2%z

as required, for k = 2. O

This question is trivial to do using tech-
nology, as illustrated in previous questions.
This gives an answer of

1.5
d
/ | x|dt—1498m
0

To work this question without technology is
not within the scope of the course since it
requires (amongst other things) calculating
sin 3 and cos 3 which you are not expected
to do without a calculator.

Another approach using technology is to
graph the motion.

ANIVAY

—Cal
9c=2.98§2618

-z

xe=1.3

The object starts at x = —4, moves to the
maximum negative displacement of —8 then
comes back to x = 2.98 at t = 1.5. Thus the
distance is | -8 — —4| +|2.98 — —8| = 14.98.
p=x—3

=4sinmt
p = 4mcosmt
p = —4n?sinwt

= —’]‘[‘2p
Period= 2% = 2s.
Amphtude— 4

The mean value of sine is zero, so the mean
position of 3 + 4sin7t is 3m.

20.

(d) The maximum value of x occurs when

sinnwt = 1:
r=34+4x1=Tm
s=x—5
= —3cos2t
$=06sin2t
§=12cos?2t
=22

Period= —” = Ts.
Amphtud

The mean value of cosine is zero, so the
mean position of 5 — 3 cos 2t is bm.

The minimum value of z occurs when
sin2t = 1:

r=5—-3x1=2m

21. Determine distance by integrating speed—the

22.

absolute value of velocity.

Define flrr=0.25cos(t)
dane
1
flf(r)ldr
5]
B.2183677462
2
flfcrnldt
5]
B. 2726736433

x = asin(kt + o)
v = kacos(kt + «)

When x = 20, v = 30:

asin(kt + o —20

sin(kt + «

( )

( ) =

kacos(kt + a) = 30
cos(kt + a) =

sin?(kt + ) + cos?(kt + a) =

400 900

@? ' k2a?

400k* + 900 = k*a’

=1
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When x =24, v = 14:

asin(kt + o) = 24

sin(kt + «

( )
( )=
kacos(kt + o) = 14
cos(kt + ) =
sin?(kt + ) + cos?(kt + a) =
576 196
a® ' k2a?
576k* 4+ 196 = k*a’
and  400k® + 900 = k*a®

576k% + 196 = 400k2 + 900

=1

176k% = 704
k2 =4
k=42

2

Period = —

€er1o 2

=TS

Now 400k? + 900 = k?a?
1600 + 900 = 4a>
a’ =625

a = +25

Amplitude = 25m

23. x = asin(kt 4+ «)
v = kacos(kt + «)

When z = 0.6, v = 0.75:

asin(kt + o) = 0.6

(
0.6
sin(kt + ) =
ka cos(kt + «) = 0.76
cos(kt + o) = 0 &
sin?(kt + a) + cos®(kt + a) = 1
0.36  0.5625
o T e T

0.36k% + 0.5625 = k2a?
When z = 0.39, v = 1.56:

asin(kt + o) = 0.39

(
sin(kt + « 0-39

(

5

)
)=

kacos(kt + a) = 1. 56
) =

sin?(kt + a) + cos?(kt + o) = 1
0.1521  2.4336
a? k2a2

0.1521%2 4 2.4336 = k%a>

and0.36k2 + 0.5625 = k%a?
0.1521%% + 2.4336 = 0.36k> + 0.5625

0.2079k% = 1.8711
=9
k=43

=1

Period = 21 S
3
Now 0.36k% + 0.5625 = k2a?
3.24 + 0.5625 = 94>
a’® = 0.4225

a = £0.65
Amplitude = 65 cm

24. (a) To prove: & = —k?z

Proof:
x = Acoskt
T = —kAsinkt
&= —k?Acoskt
= —k%z
as required. (I
To prove: |z| < |Acos0]
Proof:
RHS = |A4]
LHS = | A cos kt|
= | Al|cos kt|
|cos kt] <1
|Al|cos kt| < |A]
LHS < RHS
as required. O

(b) Modelling the tide movement with SHM
gives a mean depth of 3+15 = 9m and an
amplitude of %= 15 = 6m. The period is dou-
ble the time between low and high tides, i.e.
6% X 2= 12% hours. Hence

2T 2
T 192
k 3
3
3
38k = 67
3T
k=—
19

If we take 7am as our starting time (i.e.
t =0 at 7Tam) the water depth is

3t
d=9-6 —
cos 19

To determine the times when the water
depth is at least 5m, plot a graph of this
function and determine when it exceeds 5:
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RN

Intersect
xc=1.6955628 wo=5

pl=9-G-cos(3-n-x/19)

e

Integration By Parts Extension Exercise

du
1. = — =1
u=2x P
dv .
— =sinx V= —COSZ
dz

/xsinxdx:m(—cosx)—/—cosacdm

= —xcosx+sinx+c

=sinx —xrcosx + ¢

du
2. U= — =
dx
dv .
— =cosz v =sinx
dx

/:ccosxdx::csin:rf/sinxdx

=xsinx —cosx + ¢

du
3. =3 —_— =
u T e
d—v = sin2x v = —0.5cos 2z
dx
/3xsin21:dx

= 3z(—0.5cos2zx) — /(70.5 cos2x)(3) dz

= —1.5xcos2x + 0.75sin2x + ¢
_ 3sinx — 6x cos 2x

4
du
4. = — =1
U=z e
d
v_ e2® v = 0.5e%*

e

/xezz dz = 2(0.5¢*7) — /O.5e2x dz
= 0.5ze** — 0.25¢*"
2z — 1)e**

= Y +4¢c

4

This gives 1.70 < ¢t < 10.97 representing
times (to the nearest 5 minutes) between
8:40am and 6:00pm.

u=Inx d—u:l

dr =«
dv 9 x3
@ U3

3 3z
:x3;nx_/x32dx
23 lnz x3+
= -~ +ec
3 9
_ 2*(3lnz —1) .
9
U=z du _
= o=
dv (v +2)8
= 2)5 -
o @ 6

/x(m+2)5dx:x(x+2)6—/(x+2)6dx

6 6
_ x(wg—i)ﬁ (@ 122)7 .
(@t 2)6(712— (@+2) ,
_ (“2)21(2695—2) te

_ (:c+2)2(13x— D,



Integration By Parts Extension Exercise

Solutions to A.J. Sadler’s

du
7. = — =
u X dx
202z +1)3
@:1/2334_1 U:M
dz 3 x2
(2w +1)3
o 3

/x\/2m+ 1dx

Cz(2w+1)3 /(2x+1)§’ "

3 3
3 5
_ (2 +1)2 22z +1)2 Lo
3 15 x 2
52(2 3 5
_ x(2x+1)2 (2x+1)2+c
15
3
:(2x+1)2(5m—(2x+1)+c
15
(2 +1)3(5z — 2z — 1)
= 15 +c
(224 1)2(3z — 1)
= 15 +c
du
8 =22 — =2
u=at =2
@—ew v=e”
dz B

/a:Ze“" dz = 2%e® — /2xe”” dz

The integral on the right hand side requires inte-
gration by parts again.

du
:2 i
u T e
dl_ex _ex
de U=

/Qxel' dz = 2xe” — /263: dx

= 2ze” — 2" + ¢

=2"(z—1)+c¢
" /x2e“’ dr = 2%e” — 2% (z — 1) + ¢

=e"(2® =22 +2)+c¢

9 du

9. u==x — =2z
dx
dv .
— —=sinx V= —COSZT
dz

/:c2sinzdx= —a:QCosx—/—2xcosmdx

= /QxcoszdxfoCosx

The integral on the right hand side requires inte-
gration by parts again.

du
u=2x — =
dx
dv .
— = CoSZx v =sinx
dx

/2xcosxdx:2:rsinx—/251nmdx

=2xsinx +2cosx +c¢

2

,',/xzsinxdx:stinx+2cosxfz coszT + ¢

10. The key to this problem is appropriate selection
of u and v so that differentiating one and in-
tegrating the other leaves an expression that is
more amenable to integration. Often this means
that we need to endQup with a lower power of x.
Differentiation of e* will not achieve this, so we
need to look to integrate this part of the expres-

sion.
du
2
= 7:2
u=2x P T
d
£=2xex2 ’U:e:’l62
/xge “dz = /(a:z)(Qxez )dx
2 22 x?
=z 2xe” dz
= 2%e” —exz—i—c
=e" (22 - 1) +¢
du 1
11. =1 — ==
u=Inx P
d
£=1 v=1
/lnxdx:xlnx—/fdx
T
=zlnz—z+c
=z(lnz—1)+c¢
12. u=sinz —uzcosx
dx
dv * .
— = v=-e
dx

/ezsinxdxzemsinx—/excosxdx

The integral on the right needs to be done by
parts again. Are we going around in circles?
(You were warned these are sneaky!)

du .
U = COSZT — = —sinx
dz
dv
=e” v=e”

i
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/ezcosx:emcosx—i—/exsina:dx
.'./exsinxdx:exsinxfe“"cosx
f/e$sinxdx
.'.2/exsinxdx:e$sinx—ewcosx

o
. e”(sinz — cosx
/e‘"”smxdxz % +c

d
13. U = cos 2z & _ —2sin2x
dx
dv - .
P e v=e

/ e” cos 2z dx = e* cos 2z — / —2e” sin 2z dx

:eI0052x+2/eIsin2xdx

The integral on the right needs to be done by

Miscellaneous Exercise 8

1 270 2 -1
L () BA=1"1 ] [ 32 0 ]
J0-6 —2-4 140
1 0+0 240 —140

[ -6 -6 1
10 2 -1
[ -5 —6 1
BA+C—__2 5 2}
[ -1 -2 1
(0 5= ] on}
[ -1-4
| 140
[ -5
B!
[ —4
BD+D—_ 3]
2. (a) For * < —6, |z + 6] = —(z + 6) and

|z — 2| = —(z —2):

—(x+6)=2—(x—2)
—z—6=2—-x+2
—6 = 4 = no solution

parts again.

d
u = sin 2x —u:200$2x
dx
dv - .
— =e v=e
dx

/e‘” sin 2z = e” sin 2z — /2e1 cos 2z dx
=e%sin2x — Q/e”J cos 2z dx

/e”” cos2xdx = e” cos2x+2<em sin 2z

-2 / e” cos 2z dm)

= ¢” cos 2z + 2e” sin 2x

—4/emc082xdx

5.5 [ e¥cos2xdxr = e” cos 2z + 2e* sin 2z

e?(cos 2z + 2sin 2x)
5)

e” cos 2z dx

/
/

For -6 < = < 2, [x 4+ 6] = x4+ 6 and
|z —2| = —(z —2):

r+6=2—(r—2)
=2—-x+2
2 4+6=14

z=-1
Forz > 2, |z4+6|=z+6 and |[z—2| =2z —2:

r+6=2+x—2
6 = 0 = no solution

Single solution: z = —1.

(b) For z < =6, |x + 6] = —(z + 6) and
|z —2| = —(z —2):

—(x+6)=10—(x —2)
—x—6=10—x+2
—6 = 12 = no solution
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Solutions to A.J. Sadler’s

For -6 < z < 2, |t +6] = =+ 6 and
|z — 2| = —(z —2):

r+6=10—(zr —2)
=10—2+2
2046 =12
r = 3 = outside the domain

Forx > 2, |[x+6| = z+6 and |z —2| = 2—2:

r+6=104+2—2
6 = 8 — no solution

No solution.
(c) For ¢ < —6, |t + 6] = —(z + 6) and
|z — 2| = —(z —2):
—(z+6)=8—(z—2)
-z —6=8—2+2
—6 = 10 = no solution

For -6 < 2 < 2, |t 4+ 6] = = + 6 and
|z — 2] = —(z —2):

r+6=8—(x—2)
=8—z+2
2z 4+6 =10
x = 2 = outside the domain

Forx > 2, |[x+6| =z+6 and [zt —2| = z—2:

rT+6=84z—2
6 = 6 = all solution

The solution is x > 2.

3 2z 6 n 3y 3| _ |7 9
’ 4 2 3 3z | |1 22
2r + 3y 9 79
1 20—3x | |1 22

20+ 3y =7

and —3x+ 2y =22

(You could, of course, use non-matrix techniques
to solve the simultaneous equations if you so
choose.)

10

4. PA=P+24
PA—-P =24
P(A-1)=2A

2 =11 1]t
o211
_of2 -1]1] 11
a 1 212 -11
[ 31
| -1 3
o [ —p|[p -p
° = 1o qu q}
_ [ p2pq}
RS
det A = pq
Aol qp]
pq 0 p
[ 2
2 4-1_ | P4 P ]
pq _O p2
[ 2 2 2
2 2 4-1_ | Pm —P —DPq bqg p
A"+ piqA =1 2 }‘*‘{0 pz}
_[p»*+pa —pq
0 p2+q2

0 p?+q 0 10
pg=—3
P’ +pg =
p?—3=6
PP =9
p=43
q=Fl
check: p>+¢*>=10
94+1=10 ok.

(pa Q) € {(3’ _1)7 (_Sa 1)}

6. Let A = (z,y) be some arbitrary point on the

x — y plane. The matrix ] transforms

a b
ka kb
this point to A’ = (2/,y’), thus:

27 [ a b x
y | | ka kb Y
_ [ ax+by
| kax + kby
| ar+by
| k(az +by)
thus 2’ = azx + by
and y' = k(azx + by)
= k'

Thus the transformed point satisfies the equation
y = kx and hence lies on the line as required. [
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7. (a) & = 8cos4t
T = —32sin4t
= 4%
: _ 27 _ T
Period==F = Zs.

When ¢t =0, x = 2sin(0 = 0.
The mean position is at O (distance=0).

(b) &= —15sin 3¢
Z = —T7bcos3t
= 3%
Period:%’“s.
When t =0, x = 5cos0 = 5m.
The mean position is at O (distance=0).
(c) & = 4cos2t — 8sin 2¢
Z = —8sin2t — 16 cos 2t
=2
Period:%r = Ts.
When t =0, z = 2cos0+ 4sin 0 = 2m.
The mean position is at O (distance=0).
(d) & = 15cos 5t
T = —75sin bt
= 5%z —1)

Periodz%’“s.

Whent =0,z =14 3sin0 = 1m.

The mean position of 3sin5t is 0, so the
mean position of 1 + 3sin5¢ is 1m from O.

8. The volume of any prism-like solid is equal to
the area of the base times the height. The height
here is bm and the area of the base is determined
by

A= —/ —sinz dx
0

= — [cos z]g

- (~1-1)

= 2m?

Thus the volume of sand required is 10m?.

9. First, rewrite each relation with x the dependent
variable:

rT=y+3
r=y>+1

Now find the points of intersection to determine
the bounds for our integrals:

y+3=9y>+1
y¥—y—2=0
(y—=2)(y+1)=0
y=—1
and y =2

11

The region we want is right of the parabola and
left of the line, i.e. 32 +1 < x < y 4+ 3, so the
area is
2

(y+3) =+

A= 1)dy

= 4.5 units®

10. (c) Let Py represent the initial population:

340
720
840
220

80

I

[ 1922
204
504
672
198

[ 1920
200
500
670
200

3836
2213
1404
875
738

3800
2200
1400
900
700

1] LYPy =[25775]

%

ii. LYp, =

i, [1 1 1 1 1]L*Py=28839]

iii. 1] L* Py = [80618]
1] L*Py =[90367
1| L*¥ Py = [791220]
1] L%P, = [886936]

vi.
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Solutions to A.J. Sadler’s

Py
e — =1.119
(e) Pro
Ps
— =1.121
Py
Pso
=1.121
Py
This suggests an annual growth rate of
12.1%.
() . 0.892
1121

1—0.892 = 0.108
The harvesting rate should be 10.8%.

[ 2067 |
873
442
515
450

[ 2050
850
450
500
450

(0.95L)° Py

Q

11. One approach is to use Euler’s formula:

L.H.S. = (cosf +isinf)"

- ()"
_ ein9

= cosnb + isinnd
= R.H.S.

O

12. This is a pretty standard kind of exam question.
cos40 + isin40 = (cosf + isin6)*
= cos*# + dicos® fsin 0
+ 6i2 cos? @sin? 6 + 4i% cos § sin® 0
+itsin* 6
= cos? § + 4icos® fsin 0
— 6cos? Osin® f — 4icosfsin® @
+sin* 6
= cos? 0 — 6 cos? 0sin? 0 + sin* 0
+ (4 cos® O sin 6 — 4 cos 0 sin® 0)
Equating real parts,
cos 46 = cos* @ — 6 cos® fsin? @ + sin® 4
=cos?f — 6cos? A(1 — cos 0)
+ (1 — cos® 0)?
=cos?f — 6cos? 0+ 6cos? 0
+1—2cos?6 + cos*f
=8cos?f —8cos?H + 1

13. Since the particle has positive acceleration for all
t > 0 and positive initial velocity, its velocity is
always positive and the distance travelled in the
third second is the difference between its position

12

at t =2 and at t = 3.
o(t) = / at) dt
=/(6t+4)dt

=3t +4t +c
x(t) :/v(t)dt
:/(3t2+4t+c)dt

=342 vt +k

z(3) —xz(2) = 32
(45+3c+k)— (16 4+2c+ k) = 32

294 c=32
c=3
v(1) = 10ms™*
14. (a) Let a be the surface area and s the side
length.
a = 6s?

da
— =12
ds §
da
— =12
s §
da =~ 12sds

=12x5x0.2

= 12cm?

(b) Let v be the volume and s the side length.

U:S3

dv

oo

ov

7%32

0s s

dv = 35205
=3x25x%x0.2

=15cm?

352

g_ 200
de 14z

200
1+z
1+2 =100
=99
C = 600 + 200 1n(1 + 99)
= 1521.03
C 1521.03
99
= $15.36 per unit

da = —0.0054
dt

A= Aoeio‘OOSt

16.
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The half-life represents the time when A
0.5140:

0.5A49 = Age0-005¢
00005t _ (5
—0.005t =1n0.5
=—1In2
~ In2

"~ 0.005
~ 139 years

17. C = Che ¥
0.5Cy = Cpe 5700k
—5700k =1n0.5
=—In2
In2
~ 5700

tln 2

C = Cpe™ 5700
_ Co(eln 2)—%
= (2~ 5700
Given that 65% has decayed, C = 0.35C),

0.35C, = Cy2~ 5700
25w = (.35

5700
t = —57001og, 0.35

~ 8600 years

= log, 0.35

18. C = Coekt
0.500 = 008_12k
—12k =1n0.5
=—In2
In2
k= —
12
C = Cpe™ 12"
_ Co(eln 2)—{—'2
= (Cp2 12

Given C = 0.050(),

0.05Cy = Cy2~ 12

2712 = 0.05
5= log, 0.05
t = —12log, 0.05
~ 52 days

19. The proposition to prove is:
5" +3x9"=4a, a,neln>0

Proof:

13

For n = 0:

50 +3%x9%°=1+4
=4

Assume the proposition is true for n = k, i.e.:
5% +3x 9% =4a

for some integer a.

Then for n =k + 1,

51€+1+3X9]€+1
=5x5"+3x9x9”
=(4+1) x5 +(8+1) x3x 9"
=4 x5 +8x3x 9% 458+ 3x9k
= 4(x5" +2x 3 x9%) +4a
= 4(x5F +2x 3 x 9* +q)

Hence if the proposition is true for n = k then it

is also true for n = k + 1, and since it is true for
n = 0 it is true for all integer n > 0 by mathe-

matical induction. (I
dz
20. (a) V=g
9
T
v =
9
[
9 —
1+t
9=4(1+1)
44+4t=9
4t =5
t=1.25s
dv
(b) a= a
B 9
T (1412
v=a
9 9
1+t (1t

—9(1+t)+4(1+1)*=9
442 48t +4—-9t—-9=9
42 —t—14=0
(4t4+7)(t—-2)=0

t=2

(discarding the negative solution for t be-
cause we are given ¢t > 0).

21. Repeatedly rotate 90° anti-clockwise to give zo =
—b+ai,zz3 =—a—bi,zg = b— ai.
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Solutions to A.J. Sadler’s

22. (a) A= / 6e?t dt
:3e2f‘—|—c
4=3e"+¢
c=1
A=3e*+1
(b) A=3e'+1
=3e+1
dA
SA ~ =5t
© di
= 6e x 0.01
=0.06

23. Starting from De Moivre’s Theorem,

(cos@ +isind)"™ = cosnb + isinnf

Let n =2

(cos @ + isin @)% = cos 26 + isin 20
cos? 0 + 2icosHsin§ + i2sin? 0 = cos 20 + isin 20

cos? 0 — sin® 6 + 2i cos 0 sin § = cos 20 + isin 260

Equating real parts gives

cos? 6 — sin? 0 = cos 20

Equating imaginary parts gives

2 cosfsin @ = sin 260

as required.

24. (a) If you recognise this as being of the form
J(f(z)" f/(z)dz where f(z) = Inz then
this can be done by inspection: no working

required.

(b) This can also be done by inspection.

© [, [,
=2(lnz)? +c

14

110 3
-1 _
25. (a) T 3{1_1}
A=T"14
_1jo 3 -1
3|1 -1 2
. 2
T -1
B=17"'B
_1fo 3 10
3|1 -1 -2
] -2
B 4
C=T""'C
_1jo 3 —4
3|1 -1 —4
| -4
o 0
The coordinates of A, B and C are (2, —1),
(—=2,4) and (—4,0) respectively.
(b) |detT|=3
Let |AABC] represent the area of triangle
ABC. We can determine the area of each tri-
angle by considering its enclosing rectangle
and subtracting the right-triangular regions
outside the triangle.
|IANABC| =6 x5
_2x4 4x5 6x1
2 2 2
= 13units?
IANA'B'C'| =14 x 6
~3x6 11x4 14x2
2 2 2
= 39units>
|ANA'B'C'| = 3|AABC|
26. (a) v(t) = /0.1e0~“ dt
— 0t 4
v(0)=0
e +ec=0
c=-1

v(t) = et —1

v(10) = (e — 1) ms™*
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=10e"1 —t +¢
z(0)=0
10e° —0+¢c=0
c=—-10
z(t) = 10e™ — ¢ — 10
2(10) = (10e — 20) m

(c) Distance travelled is equal to the difference
in displacement, provided there is no change
in sign in velocity. v = e — 1 is positive
for all ¢ > 0 so

dT)=2(T+1) —z(T)

=10e*1 T+ (7 +1) — 10
— (10" — T - 10)
=10e’ 1T+ — 1 — 10e%17T
— 1021601 _ 106017 _q
= (10”7 (" = 1) = 1)m

(d) The third second means from ¢t = 2 to t = 3,
so we want d(2):

d(2) = 10e%2 (et —1) — 1
= 0.285m
(e) d(9) = 10e*9(e% — 1) — 1

= 1.587m

27. Although this presents itself as a transition ma-
trix question, it can be answered more intuitively.
The long-term distribution will be that distribu-
tion that results in a steady state, i.e. when the
6% of the birds at A who switch to B are bal-
anced by the 4% of the birds at B who switch to
B.

Let a be the number of birds at A.
Let b be the number of birds at B.

0.06a = 0.04b
1.5a =10
a a
a+b a—+1l.5a
1
25
=04

Forty percent of the birds will be at A in the long
term.

Here is the matrix approach:

15

From
A B
T = T A 1094 0.04
° B [0.06 0.96
a a
r[3]-15]
0.94a +0.04b = a
0.06a + 0.96b =b
—0.06a + 0.04b =0
0.06a — 0.04b =0
b=1.5a
a a
a+b  a-+1l.5a
- 1
T 25
=04

Alternatively, if using technology, once you've
formed T, simply raise it to increasingly high
powers until the two columns are sufficiently
identical and interpret the results.
roae :
[a.4aa131as4T 8.399912¢ [

B.5998689153 0.s000a73" H

28. (a) /sin?’a:da: = /sinzxsina:dx
= /(1 — cos® ) sinx dx

/(sin x — cos? zsinz) dz

s3x

co
—coszT + +c

(b) /4sin2xdm = /—2(—2sin2 x) dx
= —2/(1 —2sin?z — 1)dz
= —2/(c032x —1)dx

sin 2x
=—2< > —x)—f—c

=2x —sin2zx + ¢

29. (a) No working required.
(b) u =4z
d [ du d 2
— Pdt = —— dt
dx dx du ¢
= 4e*’
= 4el42)’
— folba?
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Solutions to A.J. Sadler’s

30. M = Mye™*t
05M0 = ]\4067301C
—30k =1n0.5
=—In2
p o In2
30
M = Mye™ =0°
_ MQ(GIIIQ)_%
= My2 %0
Given My is 20 times the safe level, we need
M = 0.05Mp,

0.05My = My2~ 30

2730 = 0.05
t
~5g = log20.05

t = —30log, 0.05
~ 130 years

31. (a) There are two paths from A: to D with
probability 0.7 and to B with probability
p. Since the probabilities must add to 1,
p = 0.3. Similarly there are two paths from
C: to D with probability 0.4 and to B with
probability ¢, giving ¢ = 0.6.

(b) Let T be the transition matrix as follows:

From
A B cC D
A 0 04 0 04
B |03 0 06 0.5
C 0O 01 0 0.1
D [07 05 04 O

To

Let Sy be the initial state matrix:

1000
0
0
0

So =

After one period,

S1=T5o

0
300
0
700

That is, 300 people at B and 700 at D.
(C) SQ = T250
400
350
100
150
That is, 400 people at A, 350 at B, 100 at
C and 150 at D.

16

(d) S5 =T3S,
200
255
50
495

That is, 200 people at A, 255 at B, 50 at C
and 495 at D.

[ 267
302
67

| 364 |

[ 267 |
302
67

| 364 |

In the long term there are expected to be

267 people at A, 302 at B, 67 at C and 364

at D.

Alternatively, solve

(e) TZOSO =

T2'Sy =

QL O o
QLo 8 Qo o8
L

(T'=1)

SO OO OO0 a0 >R

QLo o8

—a+0.4b4+04d =0

0.3a —b+0.6c+0.5d =0

0.1b—c+0.1d=0

0.7a +0.5b+0.4c—d =10
and a + b+ ¢+ d = 1000

(Actually one of the first four of these five
equations is redundant and can be left out
when solving.)

This gives us

o= 800
T3

2720

h="""
9

o 200
T3

3280

d="2"
9

Although you should be able to solve four
equations in four unknowns, it’s difficult to
envisage a situation where you would need
to do that without the assistance of appro-
priate technology. With that in mind, the
simpler first approach is probably more ap-
propriate.
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32. There are several conjectures that could be made

here. This solution addresses only the most ob-
vious.

The initial conjecture might deal with only two,
three and four digit numbers:

Conjecture: The difference between a 2-, 3- or 4-
digit natural number and its reflection is a mul-
tiple of 9 (where a number’s reflection is another
number with the same digits in reverse order).

The obvious extension is to consider numbers
with more digits.

Conjecture: The difference between any natural
number and its reflection is a multiple of 9.

Test with some five digit numbers:

[12345 — 54321| = 41976 = 9 x 4664
[10209 — 90201| = 79992 = 9 x 8888
|92654 — 45629| = 47025 = 9 x 5225

These support the conjecture.

Proof: For two digit numbers, let a and b be
single-digit natural numbers. Any two digit nat-
ural number p can be represented as

p=10a +b
and the reflection of p as

pft=10b+a
This gives the difference as

lp — p%| = |10a + b — (10b + a)|
= |9a — 90|
=9la —b|
Thus the difference is 9 times the difference be-
tween the two digits: a multiple of 9 as required.

For three digit numbers, let a, b and ¢ be single
digit natural numbers. Any three digit natural
number p can be represented as

p =100a + 10b + ¢
and the reflection of p as

pf =100c 4 10b + a
This gives the difference as

lp — p®| = |100a + 10b + ¢ — (100c + 10b + a)|
= |99a — 99|
=99)a — ¢

Thus the difference is 99 times the difference be-
tween the first and last digits: a multiple of 9 as
required.

(A four-digit proof could be given next, but let’s
be more ambitious.)

17

34.

Now consider the conjecture for n-digit natural
numbers. Assume the conjecture to be true for
any number p with k digits, that is

p—pt=09d

for some integer d.

Let a and b be single digit natural numbers. If
we put a before the digits of p and put b after,
we create a new natural number ¢ having k + 2
digits:

g=10""ta+10p+b
and the reflection of ¢ is
¢® = 10"+ 10p% + a

Then
lg — ¢

= 10" a + 10p + b — (1016 4 10p" + a))|

= [(10F — 1)a + 10(p — p*) — (10*T! — 1)b|

= |(10**1 — 1)(a — b) + 90d|

One less than any positive power of 10 is a multi-
ple of 9 (which we could also prove by induction,
but we take as self-evident here) so we can con-
clude that if the conjecture is true for numbers
having k digits then it is also true for numbers
having k+2 digits. Since we have established the
conjecture for numbers having 2 and 3 digits, it
is proven for all numbers of 2 or more digits by
mathematical induction. ]
-3 to BT 3
21 V6 cis T
(2223> (2cis §)(3cis 2;))

~\ 6aisTE
(

(b)

m
= 128cis —

cis >
= 128i



Miscellaneous Exercise 8

Solutions to A.J. Sadler’s

35. z=—1+3i

=4/(=1)2 4+ (\/3)2 cistan™! f—?

(224 quadrant)

625  8n
16 3
= @ciSZ—7r
16 3

14_2.271' 1 .
ZZ = 0153 2(:153

81 . 8«
= —cis —
16 3
81 . 2w
= —cis —
16 3

36. Let d be the distance AB.

Sinf = —
Sin 50
ol 1
OV TR0 At
9 1.2
dt ~ 50cos@
d?® + h? = 2500
dd dh
2d— + 2h— =
a g o
dd  dh
d— + h— =
a =Y
dd
d— +1.2h =
=+ 0
dd 12k
dt ~ d

2

y

18

When h = 40,
d = /2500 — 1600
=30m
30
cosf = =0
=0.6
o 1.2
dt — 50cosf
1.2
T30
= 0.04 radians per second
dd  1.2h
dat —  d
o 1.2x40
T30
= —1.6ms !

B approaches A at 1.6 metres per second.

37. (a) 12 x 5000 + 5 x 8000 = $100 000
(b) AD=12-DC

5
=12 —
tan 6
5
DB = —
sin 0

C =5000AD + 8000DB

5 5
= 12— )+ 2
5000< : 9) 8000 (Si 9)

— 60000 — 25000 49000
tan 6 sin 6

as required.

(¢) Minimum cost will be at one or other ex-
tremes of the domain, or where % =0.
Extremes are where D is coincident with
point C—with cost of $100000 as seen in
part (a)—or where D is coincident with

point A, in which case the cost is

80001/52 4+ 122 = $104 000

dC 25000 40000 cos 8
d0  tan?0cos2f  sin?@
~ 25000 40000 cos 6
T sin?0 sin?d
Setting % = 0 gives
25000 40000cos®
sin2  sin?0
25000 — 40000 cosf = 0
) _ 25000
40000
=0.625
6 = 51°
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25000
tan 51°

40000
sin H1°

C = 60000 —

= $91 000

38. For particle A, the amplitude of the displacement
gives ¢ = 5.

The velocity for particle A is
v = kiccos kit

and from the graph,

klc =10

k1 =2

2
Period = kilr
=7s

For particle B,

v = kod cos kot
a= —k%dsin kot

kod =3
k3d =15
ko =0.5
d=26
. 2w
Period = T
=A47s

Note: the answer of k1 = 1 in Sadler is an error.

39. Let y be the length of the shadow and let = be
the distance that has been run.

T

4.2m

e
1.95m
1
(a) —— 24m ——+— 2 — Y i
Y _1.95
24+x+y 4.2

4.2y =1.95(24 + = + y)
2.25y = 1.95z + 46.8
13 937

(b) The geometry is exactly the same as in (a)
except that the sign of x is reversed. The
length of the shadow changes at the same
speed, but now it is getting shorter at ?
m/s instead of getting longer.

19

40.

(¢) After the runner has travelled = metres,

(a) Let U be the amount used in millions of
tonnes, then

the distance from

the lamppost is given by

Pythagoras’ Theorem:

|

4.2m

T
1.95m
1

/242 + 22m t Y

y 195

VAt a2y

42
4.2y = 1.95(1/242 + 22 + y)
2.25y = 1.95y/242 + 22

13+/242 + 22
v= 15
@ 13x
dz  15/242 4 22
dy dy dz
dt ~ dz dt
_ 13z <5
©15V242 4 22
_ 13z
C3y/24% 1 2
When t =2, z =10
@ B 130
dt  3v/242 + 102
=3 m/s

R — 5008t

10
U:/ Rdt
0.08¢t710
B { 0.08 }
[25 008t]10

= 62.5(c”® — &)

= 76.60 million tonnes

0 08t dt

d4
dt

A(t) = /—5e°-08t dt
= —62.5e"0% 4 ¢

S

— 5008t

A(0) = 200
200 = —62.5¢° 4 ¢
c=262.5
A(t) = 262.5 — 62.5e-98¢
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Solving for ¢ when A(t) = 0,

262.5 — 62.5¢%98t =
62.5¢0:08 = 969.5

008t — 4.9
0.08t = In(4.2)
‘o In(4.2)
0.08
~17.9

The resource will be exhausted before the
end of the eighteenth year.

41. (a) x=sinu  dzr=cosudu
u=sin"lx
/ 1 q CcoS U d
——dr = | —=du
V1—a? V1—sin?u
cosu_
= | —=du
Veos?u
B cosu
|cos |
=u-+tc
=sinlz +¢
Note that it is safe to disregard the abso-
lute value since we can cover all permissable
values of x by restricting u to first or fourth
quadrants where cosu > 0.
(b) x=>5sinu dz=5cosudu
u = sin? z
B 5
/ 1 5 CcosUu
——dr = | ——
V25 — 2 25 — 52sin? u
Hcosu
= | ————=du
V25 cos? u
5cosu
= u
|5 cos u
=u+c
= sin! z +c
B 5
3 3
c r=—sinu dz= -cosudu
. 127
u=sin" —
3
1 3 cosu
t/—ggggg—dx:i/ 2 du
/ 2
9—da \/974(%)25111211
3 cosu
= [ ——du
V9 cos?u
3
_ 5 cosu
|3 cos ul
=
=—+4c
2
1. 4,2 "
= —Ssin  —
2 3 ¢

20

(d) x=sinu  dzx=cosudu

u=sin"z

/\/1—:62dx:/\/1—sin2ucosudu
Z/\/COSQUCOSUdu

= /cos2 udu

1
:5/(2cos2u—1+1)du

1
= 5/(c0s2u+1)du

_sin2u u

= 4 +§+C
72Sinucosu U

- 474‘54’6
7sinu 1—sin®u  u
T3 T3t

zvV/1—22 sinlz
2 + 2 +

(e) x=2sinu  dz=2cosudu
I I
u=sin o

/\/4—x2dx
:/\/474sin2u(2(:osu)du
:/2v40082ucosudu

= /4(3082udu

:2/(2c082u—1+1)du

= 2/(0082u+1)du

=sin2u—+2u-+c

= 2sinucosu + 2u + ¢

=2sinuV1 —sin®u +2u + ¢

[ 2
=z 1—%—1—23111’1%—&—0

Vi — 22
A 5 :c +2sin"1g+c
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(f)

T =2cosu
1z

U = CcoS " —
2

/de

= / V4 —4cos?u(—2sinu) du

dr = —2sinudu

:/—2 4sin? usinudu

= / —4sin2udu

:2/(1—281n2u—1)du

:2/(COSQU71)dU

=sin2u —2u+c

= 2sinucosu — 2u + ¢

=2

2

— 2cos”

1

1 — cos2ucos —2u + ¢

/ 2 x
f— 1_7_2 ‘_17
x 1 cos 5 +c

V4 — 22

>+
— C
>

21

(Comparing (e) and (f) might suggest that

Ty =—cos'a

sin”
but this is not the case because the con-
stants of integration in these two answers
are different.)
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