previous page
back to index
Trigonometric Functions as Projections
The period of the tangent function
The domain of \(\tan(\theta)\) is \(\theta \in (-\infty,+\infty), \theta \neq 90^\circ + n\times 180^\circ;\quad n\in\mathbb(Z)\).
(It is necessary to specifically exclude the values where \(\tan(\theta)\) is undefined.)
\(\tan(360\,000\,036^\circ) = \tan(180^\circ\times 2\,000\,000 + 36^\circ) = \tan(36^\circ)\) and
\(\tan(216^\circ) = \tan(180^\circ + 36^\circ) = \tan(36^\circ)\) so
\(\tan(360\,000\,036^\circ)-\tan(216^\circ) = \tan(36^\circ) - \tan(36^\circ) = 0\).
\(\tan(\theta)=0\) for \(\theta = n\times 180^\circ\) for integer \(n\). That is, \(\theta \in \{ \ldots -360^\circ, -180^\circ, 0^\circ, 180^\circ, 360^\circ, \ldots \}\)
\(\tan(\theta) = 1\) for \(\theta = 45^\circ + n\times 180^\circ\) for integer \(n\). That is, \(\theta \in \{ \ldots -315^\circ, -135^\circ, 45^\circ, 225^\circ, 405^\circ, \ldots \}\)
\(\tan(\theta) = -1\) for \(\theta = -45^\circ + n\times 180^\circ\) for integer \(n\). That is, \(\theta\in \{ \ldots -405^\circ, -225^\circ, -45^\circ, 135^\circ, 315^\circ, \ldots \}\)
Back to questions
previous page
back to index