Chapter 1

Exercise 1A

1. The initial case, where $n=1$,

$$
1=\frac{1}{2}(1)(1+1)
$$

is true.
Assume the statement is true for $n=k$, i.e.

$$
1+2+3+4+\ldots+k=\frac{1}{2} k(k+1)
$$

Then for $n=k+1$

$$
\begin{aligned}
1+2+3+4+ & \ldots+k+(k+1) \\
& =\frac{1}{2} k(k+1)+(k+1) \\
& =\left(\frac{1}{2} k+1\right)(k+1) \\
& =\frac{1}{2}(k+2)(k+1) \\
& =\frac{1}{2}(k+1)((k+1)+1)
\end{aligned}
$$

Thus if the statement is true for $n=k$ it is also true for $n=k+1$.

Since the statement is true for $n=1$ it follows by induction that it is true for all integer $n \geq 1$.
2. The initial case, where $n=1$:

$$
\begin{aligned}
\text { L.H.S. } & =1(1+1) \\
& =2 \\
\text { R.H.S. } & =\frac{1}{3}(1+1)(1+2) \\
& =2 \\
& =\text { L.H.S. }
\end{aligned}
$$

The statement is true for the initial case.
Assume the statement is true for $n=k$, i.e.
$1 \times 2+2 \times 3+3 \times 4+\ldots+k(k+1)=\frac{k}{3}(k+1)(k+2)$
Then for $n=k+1$:
$1 \times 2+2 \times 3+3 \times 4+\ldots+k(k+1)+(k+1)(k+2)$

$$
\begin{aligned}
& =\frac{k}{3}(k+1)(k+2)+(k+1)(k+2) \\
& =\left(\frac{k}{3}+1\right)(k+1)(k+2) \\
& =\frac{1}{3}(k+3)(k+1)(k+2) \\
& =\frac{k+1}{3}(k+2)(k+3) \\
& =\frac{k+1}{3}((k+1)+1)((k+1)+2)
\end{aligned}
$$

Thus if the statement is true for $n=k$ it is also true for $n=k+1$.

Hence since the statement is true for $n=1$ it follows by induction that it is true for all integer $n \geq 1$.
3. The initial case, where $n=1$ is given:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{1}\right)=1
$$

The statement is true for the initial case.
Assume the statement is true for $n=k$, i.e.

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{k}\right)=k x^{k-1}
$$

Then for $n=k+1$

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{k+1}\right) & =\frac{\mathrm{d}}{\mathrm{~d} x}\left(x x^{k}\right) \\
& =\frac{\mathrm{d}}{\mathrm{~d} x}(x)\left(x^{k}\right)+(x)\left(\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{k}\right)\right) \\
& =x^{k}+x\left(k x^{k-1}\right) \\
& =x^{k}+k x^{k} \\
& =(k+1) x^{k} \\
& =(k+1) x^{(k+1)-1}
\end{aligned}
$$

Thus if the statement is true for $n=k$ it is also true for $n=k+1$.
Hence since the statement is true for $n=1$ it follows by induction that it is true for all integer $n \geq 1$.
4. The initial case, where $n=1$:

$$
2=2^{2}-2
$$

The statement is true for the initial case.
Assume the statement is true for $n=k$, i.e.

$$
2+4+8+\ldots+2^{k}=2^{k+1}-2
$$

Then for $n=k+1$

$$
\begin{aligned}
2+4+8+\ldots+2^{k}+2^{k+1} & =2^{k+1}-2+2^{k+1} \\
& =2\left(2^{k+1}\right)-2 \\
& =2^{(k+1)+1}-2
\end{aligned}
$$

Thus if the statement is true for $n=k$ it is also true for $n=k+1$.
Hence since the statement is true for $n=1$ it follows by induction that it is true for all integer $n \geq 1$.
5. The initial case, where $n=1$:

$$
\begin{aligned}
\text { L.H.S. } & =1(1+1)^{3} \\
& =1 \\
\text { R.H.S. } & =\frac{1^{2}}{4}(1+1)(1+2)^{2} \\
& =1 \\
& =\text { L.H.S. }
\end{aligned}
$$

The statement is true for the initial case.
Assume the statement is true for $n=k$, i.e.

$$
1^{3}+2^{3}+3^{3}+4^{3}+\ldots+k^{3}=\frac{k^{2}}{4}(k+1)^{2}
$$

Then for $n=k+1$

$$
\begin{aligned}
1^{3}+2^{3}+3^{3}+4^{3} & +\ldots+k^{3}+(k+1)^{3} \\
& =\frac{k^{2}}{4}(k+1)^{2}+(k+1)^{3} \\
& =\frac{k^{2}}{4}(k+1)^{2}+(k+1)(k+1)^{2} \\
& =\frac{k^{2}+4(k+1)}{4}(k+1)^{2} \\
& =\frac{k^{2}+4 k+4}{4}(k+1)^{2} \\
& =\frac{(k+2)^{2}}{4}(k+1)^{2} \\
& =\frac{(k+1)^{2}}{4}(k+2)^{2} \\
& =\frac{(k+1)^{2}}{4}((k+1)+1)^{2}
\end{aligned}
$$

Thus if the statement is true for $n=k$ it is also true for $n=k+1$.
Hence since the statement is true for $n=1$ it follows by induction that it is true for all integer $n \geq 1$.
6. (a) For $n=2,(2 n-1)=4-1=3$ and $n^{2}=4$ hence

$$
1+3=4
$$

is consistent with the rule.
For $n=3,(2 n-1)=6-1=5$ and $n^{2}=9$ hence

$$
1+3+5=9
$$

is consistent with the rule.
Verify the other statements similarly.
(b) The initial case, where $n=1: 2 n-1=1$ and

$$
1=1^{2}
$$

The statement is true for the initial case.
Assume the statement is true for $n=k$, i.e.

$$
1+3+5+\ldots+(2 k-1)=k^{2}
$$

Then for $n=k+1$

$$
\begin{aligned}
1+3+5+\ldots+(2 k & -1)+(2(k+1)-1) \\
& =k^{2}+(2(k+1)-1) \\
& =k^{2}+2 k+2-1 \\
& =k^{2}+2 k+1 \\
& =(k+1)^{2}
\end{aligned}
$$

Thus if the statement is true for $n=k$ it is also true for $n=k+1$.
Hence since the statement is true for $n=1$ it follows by induction that it is true for all integer $n \geq 1$.
7. The initial case, where $n=1$:

$$
\frac{1}{2}=\frac{2-1}{2}
$$

The statement is true for the initial case.
Assume the statement is true for $n=k$, i.e.

$$
\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots+\frac{1}{2^{k}}=\frac{2^{k}-1}{2^{k}}
$$

Then for $n=k+1$

$$
\begin{aligned}
\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots+\frac{1}{2^{k}}+ & \frac{1}{2^{k+1}} \\
& =\frac{2^{k}-1}{2^{k}}+\frac{1}{2^{k+1}} \\
& =\frac{2\left(2^{k}-1\right)}{2^{k+1}}+\frac{1}{2^{k+1}} \\
& =\frac{2\left(2^{k}-1\right)+1}{2^{k+1}} \\
& =\frac{2^{k+1}-2+1}{2^{k+1}} \\
& =\frac{2^{k+1}-1}{2^{k+1}}
\end{aligned}
$$

Thus if the statement is true for $n=k$ it is also true for $n=k+1$.
Hence since the statement is true for $n=1$ it follows by induction that it is true for all integer $n \geq 1$.
8. The initial case, where $n=1$:

$$
\frac{1}{1(1+1)}=\frac{1}{1+1}
$$

The statement is true for the initial case.
Assume the statement is true for $n=k$, i.e.
$\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots+\frac{1}{k(k+1)}=\frac{k}{k+1}$
Then for $n=k+1$

$$
\begin{aligned}
\frac{1}{1 \times 2}+\frac{1}{2 \times 3} & +\ldots+\frac{1}{k(k+1)}+\frac{1}{(k+1)(k+2)} \\
& =\frac{k}{k+1}+\frac{1}{(k+1)(k+2)} \\
& =\frac{k(k+2)}{(k+1)(k+2)}+\frac{1}{(k+1)(k+2)} \\
& =\frac{k(k+2)+1}{(k+1)(k+2)} \\
& =\frac{k^{2}+2 k+1}{(k+1)(k+2)} \\
& =\frac{(k+1)^{2}}{(k+1)(k+2)} \\
& =\frac{k+1}{k+2} \\
& =\frac{k+1}{(k+1)+1}
\end{aligned}
$$

Thus if the statement is true for $n=k$ it is also true for $n=k+1$.
Hence since the statement is true for $n=1$ it follows by induction that it is true for all integer $n \geq 1$.
9. The initial case, where $n=1$:

$$
\begin{aligned}
\text { L.H.S. } & =1(1+2)(1+4) \\
& =10 \\
\text { R.H.S. } & =\frac{1}{4}(1+1)(1+4)(1+5) \\
& =10 \\
& =\text { L.H.S. }
\end{aligned}
$$

The statement is true for the initial case.
Assume the statement is true for $n=k$, i.e.

$$
\begin{array}{r}
1 \times 3 \times 5+2 \times 4 \times 6+\ldots+k(k+2)(k+4) \\
=\frac{k}{4}(k+1)(k+4)(k+5)
\end{array}
$$

Then for $n=k+1$

$$
\begin{aligned}
1 \times & 3 \times 5+2 \times 4 \times 6+\ldots \\
& +k(k+2)(k+4)+(k+1)(k+3)(k+5) \\
= & \frac{k}{4}(k+1)(k+4)(k+5)+(k+1)(k+3)(k+5) \\
= & (k+1)(k+5)\left(\frac{k}{4}(k+4)+(k+3)\right) \\
= & \frac{k+1}{4}(k+5)(k(k+4)+4(k+3)) \\
= & \frac{k+1}{4}((k+1)+4)\left(k^{2}+4 k+4 k+12\right) \\
= & \frac{k+1}{4}((k+1)+4)\left(k^{2}+8 k+12\right) \\
= & \frac{k+1}{4}((k+1)+4)(k+2)(k+6) \\
= & \frac{k+1}{4}((k+1)+4)((k+1)+1)((k+1)+5) \\
= & \frac{k+1}{4}((k+1)+1)((k+1)+4)((k+1)+5)
\end{aligned}
$$

Thus if the statement is true for $n=k$ it is also true for $n=k+1$.
Hence since the statement is true for $n=1$ it follows by induction that it is true for all integer $n \geq 1$.
10. The initial case, where $n=1:(x-1)$ is a factor of $x^{1}-1$ since $x-1=x^{1}-1$.
The statement is true for the initial case.
Assume the statement is true for $n=k$, i.e.

$$
x^{k}-1=a(x-1)
$$

Then for $n=k+1$

$$
\begin{aligned}
x^{k+1}-1 & =x\left(x^{k}\right)-1 \\
& =x\left(x^{k}-1+1\right)-1 \\
& =x\left(x^{k}-1\right)+x-1 \\
& =a x(x-1)+(x-1) \\
& =(a x+1)(x-1)
\end{aligned}
$$

Thus if the statement is true for $n=k$ it is also true for $n=k+1$.
Hence since the statement is true for $n=1$ it follows by induction that it is true for all integer $n \geq 1$.
11. The initial case here is where $n=7$, the first integer value satisfying $n>6$:

$$
\begin{aligned}
\text { L.H.S. } & =1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \\
& =5040 \\
\text { R.H.S. } & =3^{7} \\
& =2187 \\
5040 & >2187
\end{aligned}
$$

The statement is true for the initial case.
Assume the statement is true for $n=k ; k>6$, i.e.

$$
1 \times 2 \times 3 \times 4 \times \ldots \times k \geq 3^{k}
$$

Then for $n=k+1$

$$
\begin{aligned}
1 \times 2 \times 3 \times 4 \times \ldots \times k(k+1) & \geq 3^{k}(k+1) \\
3^{k}(k+1) & =3^{k+1} \frac{k+1}{3} \\
\text { Now } \quad k & >6 \\
k+1 & >7 \\
\frac{k+1}{3} & >1 \\
\therefore \quad 1 \times 2 \times 3 \times 4 \times \ldots \times k(k+1) & >3^{k+1}
\end{aligned}
$$

Thus if the statement is true for $n=k$ it is also true for $n=k+1$.
Hence since the statement is true for $n=7$ it follows by induction that it is true for all integer $n>6$.
12. The initial case, where $n=1$:

$$
\begin{aligned}
7^{1}+2 \times 13^{1} & =7+26 \\
& =33 \\
& =3 \times 11
\end{aligned}
$$

The statement is true for the initial case.
Assume the statement is true for $n=k$, i.e.

$$
7^{k}+2 \times 13^{k}=3 a, a \in \mathbb{I}
$$

Then for $n=k+1$

$$
\begin{aligned}
7^{k+1}+2 \times 13^{k+1} & =7 \times 7^{k}+13 \times 2 \times 13^{k} \\
& =7 \times 7^{k}+(7+6) \times 2 \times 13^{k} \\
& =7 \times 7^{k}+7 \times 2 \times 13^{k}+12 \times 13^{k} \\
& =7\left(7^{k}+2 \times 13^{k}\right)+3\left(4 \times 13^{k}\right) \\
& =7(3 a)+3\left(4 \times 13^{k}\right) \\
& =3\left(7 a+4 \times 13^{k}\right)
\end{aligned}
$$

Thus if the statement is true for $n=k$ it is also true for $n=k+1$.

Hence since the statement is true for $n=1$ it follows by induction that it is true for all integer $n \geq 1$.
13. The initial case, where $n=1$:

$$
\begin{aligned}
\text { L.H.S. } & =2 \\
\text { R.H.S. } & =\frac{2}{3}\left(1+(-1)^{1+1} 2^{1}\right. \\
& =\frac{2}{3}(1+2) \\
& =2 \\
& =\text { L.H.S. }
\end{aligned}
$$

The statement is true for the initial case.
Assume the statement is true for $n=k$, i.e.

$$
2-4+8-16+\ldots+(-1)^{k+1} 2^{k}=\frac{2}{3}\left(1+(-1)^{k+1} 2^{k}\right)
$$

Then for $n=k+1$

$$
\begin{aligned}
2-4+8 & -16+\ldots+(-1)^{k+1} 2^{k}+(-1)^{k+2} 2^{k+1} \\
& =\frac{2}{3}\left(1+(-1)^{k+1} 2^{k}\right)+(-1)^{k+2} 2^{k+1} \\
& =\frac{2}{3}\left(1+(-1)^{k+1} 2^{k}\right)+(-1)(-1)^{k+1}(2) 2^{k} \\
& =\frac{2}{3}\left(1+(-1)^{k+1} 2^{k}\right)-2(-1)^{k+1} 2^{k}
\end{aligned}
$$

$$
\begin{aligned}
& =2\left(\frac{1+(-1)^{k+1} 2^{k}}{3}-(-1)^{k+1} 2^{k}\right) \\
& =2\left(\frac{1+(-1)^{k+1} 2^{k}}{3}-\frac{3(-1)^{k+1} 2^{k}}{3}\right) \\
& =2\left(\frac{1+(-1)^{k+1} 2^{k}-3(-1)^{k+1} 2^{k}}{3}\right) \\
& =2\left(\frac{1-2(-1)^{k+1} 2^{k}}{3}\right) \\
& =2\left(\frac{1-(-1)^{k+1} 2^{k+1}}{3}\right) \\
& =2\left(\frac{1+(-1)(-1)^{k+1} 2^{k+1}}{3}\right) \\
& =2\left(\frac{1+(-1)^{(k+1)+1} 2^{k+1}}{3}\right) \\
& =\frac{2}{3}\left(1+(-1)^{(k+1)+1} 2^{k+1}\right)
\end{aligned}
$$

Thus if the statement is true for $n=k$ it is also true for $n=k+1$.

Hence since the statement is true for $n=1$ it follows by induction that it is true for all integer $n \geq 1$.

Miscellaneous Exercise 1

1. (a) $(7+3 \mathrm{i})(7-3 \mathrm{i})=7^{2}-(3 \mathrm{i})^{2}$

$$
\begin{aligned}
& =49+9 \\
& =58
\end{aligned}
$$

(b) $(5+\mathrm{i})(5-1 \mathrm{i})=5^{2}-(\mathrm{i})^{2}$

$$
\begin{aligned}
& =25+1 \\
& =26
\end{aligned}
$$

(c) $(3+2 \mathrm{i})(2-3 \mathrm{i})=6-9 \mathrm{i}+4 \mathrm{i}-6 \mathrm{i}^{2}$

$$
\begin{aligned}
& =6-5 \mathrm{i}+6 \\
& =12-5 \mathrm{i}
\end{aligned}
$$

(d) $(1-5 \mathrm{i})^{2}=1-10 \mathrm{i}+25 \mathrm{i}^{2}$

$$
\begin{aligned}
& =1-10 \mathrm{i}-25 \\
& =-24-10 \mathrm{i}
\end{aligned}
$$

(e) $\frac{3-2 \mathrm{i}}{2+\mathrm{i}}=\frac{(3-2 \mathrm{i})(2-\mathrm{i})}{(2+\mathrm{i})(2-\mathrm{i})}$

$$
\begin{aligned}
& =\frac{6-3 \mathrm{i}-4 \mathrm{i}+2 \mathrm{i}^{2}}{4-\mathrm{i}^{2}} \\
& =\frac{6-7 \mathrm{i}-2}{4+1} \\
& =\frac{4-7 \mathrm{i}}{5} \\
& =0.8-1.4 \mathrm{i}
\end{aligned}
$$

(f) $\frac{1+2 \mathrm{i}}{3-4 \mathrm{i}}=\frac{(1+2 \mathrm{i})(3+4 \mathrm{i})}{(3-4 \mathrm{i})(3+4 \mathrm{i})}$
$=\frac{3+4 \mathrm{i}+6 \mathrm{i}+8 \mathrm{i}^{2}}{9-16 \mathrm{i}^{2}}$
$=\frac{3+10 \mathrm{i}-8}{9+16}$
$=\frac{-5+10 \mathrm{i}}{25}$
$=\frac{-1+2 \mathrm{i}}{5}$

$$
=-0.2+0.4 \mathrm{i}
$$

2. (a) $z+w=3-4 \mathrm{i}-4+5 \mathrm{i}$

$$
=-1+\mathrm{i}
$$

(b) $z w=(3-4 \mathrm{i})(-4+5 \mathrm{i})$

$$
\begin{aligned}
& =-12+15 \mathrm{i}+16 \mathrm{i}-20 \mathrm{i}^{2} \\
& =-12+31 \mathrm{i}+20 \\
& =8+31 \mathrm{i}
\end{aligned}
$$

(c) $\bar{z}=3+4 \mathrm{i}$
(d) $z^{2}=(3-4 \mathrm{i})^{2}$

$$
\begin{aligned}
& =9-24 \mathrm{i}+16 \mathrm{i}^{2} \\
& =9-24 \mathrm{i}-16 \\
& =-7-24 \mathrm{i}
\end{aligned}
$$

(e) $\overline{z w}=\overline{(8+31 \mathrm{i})}$

$$
=8-31 \mathrm{i}
$$

(f) $\bar{z} \bar{w}=(3+4 \mathrm{i})(-4-5 \mathrm{i})$

$$
\begin{aligned}
& =-12-15 \mathrm{i}-16 \mathrm{i}-20 \mathrm{i}^{2} \\
& =-12-31 \mathrm{i}+20 \\
& =8-31 \mathrm{i}
\end{aligned}
$$

(g) $q=\operatorname{Re}(\bar{w})+\operatorname{Im}(\bar{z}) \mathrm{i}$

$$
\begin{aligned}
& =\operatorname{Re}(-4-5 \mathrm{i})+\operatorname{Im}(3+4 \mathrm{i}) \mathrm{i} \\
& =-4+4 \mathrm{i}
\end{aligned}
$$

3. $(1+\mathrm{i})^{5}=1+5(\mathrm{i})+10\left(\mathrm{i}^{2}\right)+10\left(\mathrm{i}^{3}\right)+5\left(\mathrm{i}^{4}\right)+\mathrm{i}^{5}$

$$
\begin{aligned}
& =1+5 \mathrm{i}-10-10 \mathrm{i}+5+\mathrm{i} \\
& =-4-4 \mathrm{i}
\end{aligned}
$$

4.

$$
\begin{aligned}
(1-3 \mathrm{i})^{3} & =1^{3}+3\left(1^{2}\right)(-3 \mathrm{i})+3(1)(-3 \mathrm{i})^{2}+(-3 \mathrm{i})^{3} \\
& =1-9 \mathrm{i}+27 \mathrm{i}^{2}-27 \mathrm{i}^{3} \\
& =1-9 \mathrm{i}-27+27 \mathrm{i} \\
& =-26+18 \mathrm{i}
\end{aligned}
$$

$\left.\therefore \quad \operatorname{Im}(1-3 \mathrm{i})^{3}\right)=18$
5. (a) $3 \times 2=6$
(b) $\operatorname{Re}((3-2 \mathrm{i})(2+\mathrm{i}))=\operatorname{Re}\left(6+3 \mathrm{i}-4 \mathrm{i}-2 \mathrm{i}^{2}\right)$

$$
\begin{aligned}
& =\operatorname{Re}(6+-i+2) \\
& =8
\end{aligned}
$$

6. No working required.
7. (a) No working required.
(b) $6 \operatorname{cis} \frac{5 \pi}{3}=6 \operatorname{cis}\left(\frac{5 \pi}{3}-2 \pi\right)$

$$
\begin{aligned}
& =6 \operatorname{cis}\left(\frac{5 \pi}{3}-\frac{6 \pi}{3}\right) \\
& =6 \operatorname{cis}\left(-\frac{\pi}{3}\right)
\end{aligned}
$$

8. (a) No working required
(b) No working required
(c) $z w=(8 \times 2) \operatorname{cis}\left(\frac{3 \pi}{4}+\frac{\pi}{3}\right)$

$$
\begin{aligned}
& =16 \operatorname{cis} \frac{13 \pi}{12} \\
& =16 \operatorname{cis}\left(\frac{13 \pi}{12}-2 \pi\right) \\
& =16 \operatorname{cis}\left(-\frac{11 \pi}{12}\right)
\end{aligned}
$$

(d) Use the commutative property of multiplication and no working is needed.
(e) $\mathrm{i} w=\left(\operatorname{cis} \frac{\pi}{2}\right)\left(2 \operatorname{cis} \frac{\pi}{3}\right)$

$$
\begin{aligned}
& =2 \operatorname{cis}\left(\frac{\pi}{3}+\frac{\pi}{2}\right) \\
& =2 \operatorname{cis} \frac{5 \pi}{6}
\end{aligned}
$$

(f) $\mathrm{i} z=8 \operatorname{cis}\left(\frac{3 \pi}{4}+\frac{\pi}{2}\right)$

$$
\begin{aligned}
& =8 \operatorname{cis} \frac{5 \pi}{4} \\
& =8 \operatorname{cis}\left(\frac{5 \pi}{4}-2 \pi\right) \\
& =8 \operatorname{cis}\left(-\frac{3 \pi}{4}\right)
\end{aligned}
$$

(g) $\frac{z}{w}=\frac{8}{2} \operatorname{cis}\left(\frac{3 \pi}{4}-\frac{\pi}{3}\right)$

$$
=4 \operatorname{cis} \frac{5 \pi}{1} 2
$$

(h) No working required.
9. The initial case, where $n=1$,

$$
\begin{aligned}
\text { L.H.S. } & =5\left(1+2^{0}\right)+2 \\
& =12 \\
\text { R.H.S. } & =1(1+6)+5\left(2^{1}-1\right) \\
& =7+5 \\
& =12 \\
& =\text { L.H.S. }
\end{aligned}
$$

is true.
Assume the statement is true for $n=k$, i.e.

$$
\begin{array}{r}
12+19+31+53+\ldots+\left(5\left(1+2^{k-1}\right)+2 k\right) \\
=k(k+6)+5\left(2^{k}-1\right)
\end{array}
$$

Then for $n=k+1$

$$
\begin{aligned}
12 & +19+31+53+\ldots+\left(5\left(1+2^{k-1}\right)+2 k\right) \\
& +\left(5\left(1+2^{k}\right)+2(k+1)\right) \\
& =k(k+6)+5\left(2^{k}-1\right)+5\left(1+2^{k}\right)+2(k+1) \\
& =k(k+6)+5 \times 2^{k}-5+5+5 \times 2^{k}+2 k+2 \\
& =k(k+6)+5 \times 2^{k}+5 \times 2^{k}+2 k+2 \\
= & k(k+6)+5 \times 2 \times 2^{k}+2 k+2 \\
= & k(k+6)+5 \times 2^{k+1}+2 k+2 \\
& =k(k+6)+5 \times 2^{k+1}-5+5+2 k+2 \\
& =k(k+6)+5\left(2^{k+1}-1\right)+2 k+7 \\
& =k(k+6)+5\left(2^{k+1}-1\right)+(k+6)+(k+1) \\
& =(k+1)(k+6)+5\left(2^{k+1}-1\right)+(k+1) \\
& =(k+1)(k+7)+5\left(2^{k+1}-1\right) \\
& =(k+1)((k+1)+6)+5\left(2^{k+1}-1\right)
\end{aligned}
$$

Thus if the statement is true for $n=k$ it is also true for $n=k+1$.

Since the statement is true for $n=1$ it follows by induction that it is true for all integer $n \geq 1$.

