Chapter 7

Exercise 7A

1-6.

7-8.
$\overline{\text { Alg Decimal Real Deg } \text { [而 }}$
9. (a) $t=5 \times 60=300$

$$
T=10+65 \mathrm{e}^{-0.004 \times 300}=29.6^{\circ} \mathrm{C}
$$

(b) $t=5 \times 60=600$

$$
T=10+65 \mathrm{e}^{-0.004 \times 600}=15.9^{\circ} \mathrm{C}
$$

10. $\log _{e} \mathrm{e}=\log _{\mathrm{e}} \mathrm{e}^{1}=1$
11. $\log _{\mathrm{e}} \frac{1}{\mathrm{e}}=\log _{\mathrm{e}} \mathrm{e}^{-1}=-1$
12. $\log _{\mathrm{e}}\left(\mathrm{e}^{3}\right)=3$
13. $\log _{e} \sqrt{\mathrm{e}}=\log _{e} \mathrm{e}^{\frac{1}{2}}=0.5$
14. $\mathrm{e}^{x+1}=7$

$$
\begin{aligned}
x+1 & =\ln (7) \\
x & =\ln (7)-1
\end{aligned}
$$

15. $\mathrm{e}^{x+3}=50$
$x+3=\ln (50)$ $x=\ln (50)-3$
16. $\mathrm{e}^{x-3}=100$
$x-3=\ln (100)$

$$
x=\ln (100)+3
$$

17. $\mathrm{e}^{2 x+1}=15$

$$
2 x+1=\ln (15)
$$

$$
x=\frac{\ln (15)-1}{2}
$$

18. $5 \mathrm{e}^{3 x-1}=3000$

$$
\begin{aligned}
\mathrm{e}^{3 x-1} & =600 \\
3 x-1 & =\ln (600) \\
x & =\frac{\ln (600)+1}{3}
\end{aligned}
$$

19. $4 \mathrm{e}^{x+2}+3 \mathrm{e}^{x+2}=7000$

$$
\begin{aligned}
7 \mathrm{e}^{x+2} & =7000 \\
\mathrm{e}^{x+2} & =1000 \\
x+2 & =\ln (1000) \\
x & =\ln (1000)-2
\end{aligned}
$$

20. $\quad \mathrm{e}^{2} x-30 \mathrm{e}^{x}=200$

$$
\left(\mathrm{e}^{x}\right)^{2}-30 \mathrm{e}^{x}=200
$$

$$
y^{2}-30 y=200=0
$$

$$
(y-10)(y-20)=0
$$

$$
y=10 \quad \text { or } y=20
$$

$$
e^{x}=10 e^{x} \quad=20
$$

$$
x=\ln 10 \quad x=\ln 20
$$

21. $A=2000 \mathrm{e}^{-t}$

$$
\begin{aligned}
e^{-t} & =\frac{A}{2000} \\
e^{t} & =\frac{2000}{A} \\
t & =\ln \frac{2000}{A}
\end{aligned}
$$

(a) $t=\ln \frac{2000}{1500}=0.288$
(b) $t=\ln \frac{2000}{500}=1.386$
(c) $t=\ln \frac{2000}{50}=3.689$
22. (a) In $2000, t=10$ so

$$
\begin{aligned}
P & =20000000 \mathrm{e}^{0.02 \times 10} \\
& =24428000
\end{aligned}
$$

(b) In $2050, t=60$ so

$$
\begin{aligned}
P & =20000000 \mathrm{e}^{0.02 \times 60} \\
& =66402000
\end{aligned}
$$

23. (a) $t=0$ so

$$
\begin{aligned}
N & =5000 \mathrm{e}^{0.55 \times 0} \\
& =5000
\end{aligned}
$$

(b) $t=3$ so

$$
\begin{aligned}
N & =5000 \mathrm{e}^{0.55 \times 3} \\
& =26000
\end{aligned}
$$

(c) $t=10$ so

$$
\begin{aligned}
N & =5000 \mathrm{e}^{0.55 \times 10} \\
& =1233000
\end{aligned}
$$

24. In $2010, t=20$ so the company's requirement is

$$
P \mathrm{e}^{0.1 \times 20}=7.39 P
$$

The requirement has increased from 100% of P in 1990 to 739% of P in 2010 , i.e. an increase of 639\%.
25. (a) $N=\frac{100000}{1+499 \mathrm{e}^{-0.8 \times 0}}$

$$
=200
$$

(b) $N=\frac{100000}{1+499 \mathrm{e}^{-0.8 \times 5}}$

$$
=9862
$$

(c) $N=\frac{100000}{1+499 \mathrm{e}^{-0.8 \times 10}}$

$$
=85661
$$

(d) $\lim _{t \rightarrow \infty} \frac{100000}{1+499 \mathrm{e}^{-0.8 t}}=\frac{100000}{1}$

$$
=100000
$$

(since $\lim _{t \rightarrow \infty} \mathrm{e}^{-0.08 t}=\mathrm{e}^{-\infty}=\frac{1}{\mathrm{e}^{\infty}}=\frac{1}{\infty}=0$)
17. Product rule:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} x^{2} \mathrm{e}^{x} & =2 x \mathrm{e}^{x}+x^{2} \mathrm{e}^{x} \\
& =x \mathrm{e}^{x}(2+x)
\end{aligned}
$$

18. Sum and product rules:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x+x \mathrm{e}^{x}\right) & =1+\left(\mathrm{e}^{x}+x \mathrm{e}^{x}\right) \\
& =1+\mathrm{e}^{x}(1+x)
\end{aligned}
$$

19. Product rule:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} x^{3} \mathrm{e}^{x} & =3 x^{2} \mathrm{e}^{x}+x^{3} \mathrm{e}^{x} \\
& =x^{2} \mathrm{e}^{x}(3+x)
\end{aligned}
$$

20. $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{3}+\mathrm{e}^{x}\right)=3 x^{2}+\mathrm{e}^{x}$
21. Product rule:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} x \mathrm{e}^{2 x} & =\mathrm{e}^{2 x}+2 x \mathrm{e}^{2 x} \\
& =\mathrm{e}^{2 x}(1+2 x)
\end{aligned}
$$

22. Product rule:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} 2 x \mathrm{e}^{x} & =2 \mathrm{e}^{x}+2 x \mathrm{e}^{x} \\
& =2 \mathrm{e}^{x}(1+x)
\end{aligned}
$$

23. Quotient rule:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \frac{\mathrm{e}^{x}}{x} & =\frac{x \mathrm{e}^{x}-\mathrm{e}^{x}}{x^{2}} \\
& =\frac{\mathrm{e}^{x}(x-1)}{x^{2}}
\end{aligned}
$$

24. Product rule:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mathrm{e}^{x}(1+x) & =\mathrm{e}^{x}(1+x)+\mathrm{e}^{x} \\
& =\mathrm{e}^{x}(2+x)
\end{aligned}
$$

25. Product rule:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mathrm{e}^{x}(1+x)^{5} & =\mathrm{e}^{x}(1+x)^{5}+5 \mathrm{e}^{x}(1+x)^{4} \\
& =\mathrm{e}^{x}(1+x)^{4}(1+x+5) \\
& =\mathrm{e}^{x}(1+x)^{4}(6+x)
\end{aligned}
$$

26. Product rule:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mathrm{e}^{x}(10-x)^{4} & =\mathrm{e}^{x}(10-x)^{4}+(-4) \mathrm{e}^{x}(10-x)^{3} \\
& =\mathrm{e}^{x}(10-x)^{3}(10-x-4) \\
& =\mathrm{e}^{x}(10-x)^{3}(6-x)
\end{aligned}
$$

27. $\frac{\mathrm{d}}{\mathrm{d} x} \frac{1}{\mathrm{e}^{x}}=\frac{\mathrm{d}}{\mathrm{d} x} \mathrm{e}^{-x}=-\mathrm{e}^{-x}=-\frac{1}{e^{x}}$
28.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x+2 \mathrm{e}^{2 x}
$$

At $x=1$,

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =6(1)+2 \mathrm{e}^{2(1)} \\
& =6+2 \mathrm{e}^{2}
\end{aligned}
$$

29.

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =2 x \mathrm{e}^{2 x}+2 x^{2} \mathrm{e}^{2 x} \\
& =2 x \mathrm{e}^{2 x}(1+x)
\end{aligned}
$$

At $x=1$,

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =2(1) \mathrm{e}^{2(1)}(1+1) \\
& =4 \mathrm{e}^{2}
\end{aligned}
$$

30. $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{e^{x}}$ (see number 27 above)

$$
\begin{aligned}
-\frac{1}{\mathrm{e}^{x}} & =-\mathrm{e} \\
\frac{1}{\mathrm{e}^{x}} & =\mathrm{e} \\
1 & =\mathrm{e}^{1+x} \\
1+x & =\ln 1 \\
& =0 \\
x & =-1 \\
y & =\frac{1}{\mathrm{e}^{-1}} \\
& =\mathrm{e}
\end{aligned}
$$

The coordinates are $(-1, e)$.
31. First differentiate using the quotient rule:

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{2 x \mathrm{e}^{x}-2 \mathrm{e}^{x}}{(2 x)^{2}} \\
& =\frac{2 \mathrm{e}^{x}(x-1)}{4 x^{2}} \\
& =\frac{\mathrm{e}^{x}(x-1)}{2 x^{2}}
\end{aligned}
$$

Now find where $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$:

$$
\begin{aligned}
\frac{\mathrm{e}^{x}(x-1)}{2 x^{2}} & =0 \\
\mathrm{e}^{x}(x-1) & =0 \\
x-1 & =0 \\
x & =1 \\
y & =\frac{\mathrm{e}^{1}}{2(1)} \\
& =\frac{\mathrm{e}}{2}
\end{aligned}
$$

32.

$$
\begin{aligned}
\frac{\mathrm{d} R}{\mathrm{~d} x} & =10000 \times-0.5 \mathrm{e}^{-0.5 x} \\
& =-5000 \mathrm{e}^{-0.5 x} \$ / \mathrm{wk}
\end{aligned}
$$

Exercise 7C

1. $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x}$
2. $\log _{\mathrm{e}} 2 x=\log _{\mathrm{e}} 2+\log _{e} x$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=0+\frac{1}{x}=\frac{1}{x}
$$

3.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=10 x+\frac{1}{x}
$$

4. $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=1+\mathrm{e}^{x}+\frac{1}{x}$
5. Using the chain rule,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{3 x+2} \times 3=\frac{3}{3 x+2}
$$

6. $\log _{e} x^{2}=2 \log _{e} x$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{x}
$$

7. $\log _{\mathrm{e}}(\sqrt[3]{x})=\frac{1}{3} \log _{\mathrm{e}} x$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{3 x}
$$

8. $\log _{\mathrm{e}}(3 \sqrt{x})=\log _{\mathrm{e}} 3+\log _{e} \sqrt{x}=\log _{\mathrm{e}} 3+\frac{1}{2} \log _{e} x$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2 x}
$$

9. $\log _{\mathrm{e}} \frac{x}{5}=\log _{\mathrm{e}} x-\log _{e} 5$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x}
$$

10. Using the chain rule with $u=x(x+3)$,

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{1}{x(x+3)}[(x+3)+x] \\
& =\frac{2 x+3}{x(x+3)}
\end{aligned}
$$

11. Using the chain rule with $u=x^{2}+x-12$,

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{1}{x^{2}+x-12}(2 x+1) \\
& =\frac{2 x+1}{x^{2}+x-12}
\end{aligned}
$$

12. Using the product rule:

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\log _{\mathrm{e}}(x)+x \frac{1}{x} \\
& =\log _{\mathrm{e}}(x)+1
\end{aligned}
$$

13. Using the chain rule with $u=\log _{\mathrm{e}} x$,

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =3\left(\log _{\mathrm{e}} x\right)^{2} \frac{1}{x} \\
& =\frac{3\left(\log _{\mathrm{e}} x\right)^{2}}{x}
\end{aligned}
$$

14. Using the chain rule with $u=\frac{1}{x}$,

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{1}{\frac{1}{x}}\left(-\frac{1}{x^{2}}\right) \\
& =x\left(-\frac{1}{x^{2}}\right) \\
& =-\frac{1}{x}
\end{aligned}
$$

The above works just fine, but it's simpler to use a log law first:

$$
\begin{aligned}
y & =\log _{\mathrm{e}} \frac{1}{x} \\
& =-\log _{\mathrm{e}} x \\
\frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{1}{x} &
\end{aligned}
$$

It's not uncommon for there to be more than one way to do a problem, and it's similarly not uncommon to realise the simple approach only after you've done the more complicated one.
15. Using the chain rule with $u=\log _{\mathrm{e}} x$,

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =-\frac{1}{\left(\log _{\mathrm{e}} x\right)^{2}} \times \frac{1}{x} \\
& =-\frac{1}{x\left(\log _{\mathrm{e}} x\right)^{2}}
\end{aligned}
$$

16. Using the product rule,

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\mathrm{e}^{x} \log _{\mathrm{e}} x+\mathrm{e}^{x} \frac{1}{x} \\
& =\mathrm{e}^{x}\left(\log _{\mathrm{e}} x+\frac{1}{x}\right)
\end{aligned}
$$

17. Using the quotient rule,

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{\left(\frac{1}{x}\right)(x)-\left(\log _{\mathrm{e}} x\right)(1)}{x^{2}} \\
& =\frac{1-\log _{\mathrm{e}} x}{x^{2}}
\end{aligned}
$$

18. Using the chain rule with $u=1+\log _{\mathrm{e}} x$,

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =3\left(1+\log _{\mathrm{e}} x\right)^{2}\left(\frac{1}{x}\right) \\
& =\frac{3\left(1+\log _{\mathrm{e}} x\right)^{2}}{x}
\end{aligned}
$$

19. Using the chain rule with $u=3 x^{2}+16 x+15$. Note that we can find $\frac{\mathrm{d} u}{\mathrm{~d} x}$ using the product rule, but it's probably simpler to simply expand it: $u=x^{3}+8 x^{2}+15 x$.

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{1}{x(x+5)(x+3)}\left(3 x^{2}+16 x+15\right) \\
& =\frac{3 x^{2}+16 x+15}{x(x+5)(x+3)}
\end{aligned}
$$

Again, however, this is simpler if we use log laws first:

$$
\begin{aligned}
y & =\log _{\mathrm{e}}[x(x+5)(x+3)] \\
& =\log _{\mathrm{e}} x+\log _{\mathrm{e}}(x+5)+\log _{\mathrm{e}}(x+3) \\
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{1}{x}+\frac{1}{x+5}+\frac{1}{x+3}
\end{aligned}
$$

Students are encouraged to convince themselves that these two solutions are equivalent.
20. First simplify using log laws ...

$$
\begin{aligned}
y & =\log _{\mathrm{e}} \frac{x+1}{x+3} \\
& =\log _{\mathrm{e}}(x+1)-\log _{\mathrm{e}}(x+3) \\
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{1}{x+1}-\frac{1}{x+3}
\end{aligned}
$$

21. First simplify using log laws then use the chain rule with $u=x^{2}+5$:

$$
\begin{aligned}
y & =\log _{\mathrm{e}}\left[\left(x^{2}+5\right)^{4}\right] \\
& =4 \log _{\mathrm{e}}\left(x^{2}+5\right) \\
\frac{\mathrm{d} y}{\mathrm{~d} x} & =4\left(\frac{1}{x^{2}+5}\right)(2 x) \\
& =\frac{8 x}{x^{2}+5}
\end{aligned}
$$

22. Take as far as we can with log laws first, then differentiation is trivial.

$$
\begin{aligned}
y & =\log _{\mathrm{e}} \frac{x}{x^{2}-1} \\
& =\log _{\mathrm{e}} x-\log _{\mathrm{e}}\left(x^{2}-1\right) \\
& =\log _{\mathrm{e}} x-\log _{\mathrm{e}}[(x-1)(x+1)] \\
& =\log _{\mathrm{e}} x-\log _{\mathrm{e}}(x-1)-\log _{\mathrm{e}}(x+1) \\
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{1}{x}-\frac{1}{x-1}-\frac{1}{x+1}
\end{aligned}
$$

23. $\quad y=\log _{\mathrm{e}} \frac{(x+2)^{3}}{x-2}$

$$
=\log _{\mathrm{e}}\left[(x+2)^{3}\right]-\log _{\mathrm{e}}(x-2)
$$

$$
=3 \log _{\mathrm{e}}(x+2)-\log _{\mathrm{e}}(x-2)
$$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3}{x+2}-\frac{1}{x-2}
$$

24. $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x}$ so when $x=1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{1}=1$.
25. $\frac{\mathrm{d} y}{\mathrm{~d} x}=\log _{\mathrm{e}}(x)+1$ (see question 12) so when $x=\mathrm{e}^{2}$,

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\log _{\mathrm{e}}\left(\mathrm{e}^{2}\right)+1 \\
& =2+1 \\
& =3
\end{aligned}
$$

26. $y^{\prime}=6 x+\frac{1}{x}$ so when $x=1, y^{\prime}=6 \times 1+\frac{1}{1}=7$.
27. $y^{\prime}=\frac{-2\left(1-\log _{e} x\right)}{x^{2}}$ (compare question 17) so when $x=1$,

$$
\begin{aligned}
y^{\prime} & =\frac{-2\left(1-\log _{\mathrm{e}}(1)\right)}{(1)^{2}} \\
& =\frac{-2(1-0)}{1} \\
& =-2
\end{aligned}
$$

28. $y^{\prime}=\frac{1}{x}$ so

$$
\begin{aligned}
\frac{1}{x} & =0.25 \\
x & =4 \\
y & =\ln 4
\end{aligned}
$$

The coordinates of the one point with a gradient of 0.25 are $(4, \ln 4)$.
29. $y^{\prime}=\frac{2}{x}$ (see question 6) so

$$
\begin{aligned}
\frac{2}{x} & =4 \\
x & =0.5 \\
y & =\ln 0.25
\end{aligned}
$$

The coordinates of the one point with a gradient of 4 are $(0.5, \ln 0.25)$.
30. Using the chain rule we obtain $y^{\prime}=\frac{6}{6 x-5}$ so

$$
\begin{aligned}
\frac{6}{6 x-5} & =0.24 \\
\frac{1}{6 x-5} & =0.04 \\
6 x-5 & =\frac{1}{0.04} \\
& =25 \\
x & =5 \\
y & =\ln (6(5)-5) \\
& =\ln 25
\end{aligned}
$$

The coordinates of the one point with a gradient of 0.24 are $(5, \ln 25)$.
31. Differentiating:

$$
\begin{aligned}
y & =\ln x+\ln (x+3) \\
y^{\prime} & =\frac{1}{x}+\frac{1}{x+3} \\
\frac{1}{x}+\frac{1}{x+3} & =0.5 \\
(x+3)+x & =0.5 x(x+3) \\
2 x+3 & =0.5\left(x^{2}+3 x\right) \\
4 x+6 & =x^{2}+3 x \\
x^{2}+3 x-4 x-6 & =0 \\
x^{2}-x-6 & =0 \\
(x-3)(x+2) & =0 \\
\text { either } x & =3 \\
y & =\ln [3(3+3)] \\
& =\ln 18 \\
x & =-2 \\
y & =\ln [-2(-2+3)] \\
& =\ln (-2)
\end{aligned}
$$

Miscellaneous Exercise 7

1. (a) It's a sine curve with amplitude 1 and period of 180° so

$$
y=1 \sin 2 x
$$

(b) It's a cosine curve with amplitude 2 and period of 360° so

$$
y=2 \cos x
$$

(c) It's an inverted sine with amplitude 2 and period 360° so

$$
y=-2 \sin x
$$

2. (a) $\mathrm{f}(x)$ is not differentiable at $x=a$ because it has a different gradient as we approach a from the left than when we approach from the right.
$\mathrm{f}(x)$ is not differentiable at $x=c$ because it is not continuous at that point.
$\mathrm{f}(x)$ is differentiable everywhere else (because linear and quadratic functions are always differentiable).
(b) $\mathrm{f}^{\prime}(x)$ has a constant positive value for $x<a$, is undefined at $x=a$, is linear with positive gradient for $a<x<c$, passing through 0

But $\ln (-2)$ is undefined so we have only one point with gradient 0.5 having coordinates $(3, \ln 18)$.
32. $y^{\prime}=\frac{1}{x}$ so the gradient of the curve at $(1,0)$ is $m=\frac{1}{1}=1$, then the tangent line is

$$
\begin{aligned}
\left(y-y_{0}\right) & =m\left(x-x_{0}\right) \\
y-0 & =1(x-1) \\
y & =x-1
\end{aligned}
$$

33. The gradient is $m=\frac{1}{\mathrm{e}}$ so the tangent line is

$$
\begin{aligned}
\left(y-y_{0}\right) & =m\left(x-x_{0}\right) \\
y-1 & =\frac{1}{\mathrm{e}}(x-\mathrm{e}) \\
& =\frac{x}{\mathrm{e}}-1 \\
y & =\frac{x}{\mathrm{e}}
\end{aligned}
$$

when $x=b$, is undefined for $x=c$ and is zero for $x>c$.
See Sadler for a sketch of the graph.
3. Starting with the R.H.S.

$$
\begin{aligned}
\frac{2 \tan \theta}{\tan ^{2} \theta+1} & =\frac{2 \frac{\sin \theta}{\cos \theta}}{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}+1} \\
& =\frac{2 \frac{\sin \theta}{\cos \theta^{2}}}{\frac{\sin ^{2}+\cos ^{2} \theta}{\cos ^{2} \theta}} \\
& =\frac{2 \frac{\sin \theta}{\cos \theta}}{\frac{1}{\cos ^{2} \theta}} \\
& =2 \frac{\sin \theta}{\cos \theta} \times \cos ^{2} \theta \\
& =2 \sin \theta \cos \theta \\
& =\sin 2 \theta \\
& =\text { L.H.S. }
\end{aligned}
$$

4. (a) Chain rule:

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =4\left(3 x^{2}+5\right)^{3}(6 x) \\
& =24 x\left(3 x^{2}+5\right)^{3}
\end{aligned}
$$

(b) Quotient rule:

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{3(2 x+7)-2(3 x-4)}{(2 x+7)^{2}} \\
& =\frac{6 x+21-6 x+8}{(2 x+7)^{2}} \\
& =\frac{29}{(2 x+7)^{2}}
\end{aligned}
$$

(c) Product and chain rules:

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =2 x(2 x-3)^{5}+x^{2}\left[5(2 x-3)^{4}\right](2) \\
& =2 x(2 x-3)^{5}+10 x^{2}(2 x-3)^{4} \\
& =2 x(2 x-3)^{4}(2 x-3+5 x) \\
& =2 x(2 x-3)^{4}(7 x-3)
\end{aligned}
$$

Checking using the Classpad:

5. (a) $3 x^{2}+11 x-4=3 x^{2}+12 x-x-4$

$$
\begin{aligned}
& =3 x(x+4)-(x+4) \\
& =(x+4)(3 x-1)
\end{aligned}
$$

(b) $\lim _{x \rightarrow-4} \frac{3 x^{2}+11 x-4}{x+4}=\lim _{x \rightarrow-4} \frac{(x+4)(3 x-1)}{x+4}$

$$
=\lim _{x \rightarrow-4}(3 x-1)
$$

$$
=3(-4)-1
$$

$$
=-13
$$

6. Continuity at $x=3$:

$$
\begin{aligned}
\lim _{x \rightarrow 3^{-}} \mathrm{f}(x) & =\lim _{x \rightarrow 3^{+}} \mathrm{f}(x) \\
\lim _{x \rightarrow 3^{-}}(2 x+5) & =\lim _{x \rightarrow 3^{+}}(a x+2) \\
11 & =3 a+2 \\
a & =3
\end{aligned}
$$

Continuity at $x=10$:

$$
\begin{aligned}
\lim _{x \rightarrow 10^{-}} \mathrm{f}(x) & =\lim _{x \rightarrow 10^{+}} \mathrm{f}(x) \\
\lim _{x \rightarrow 10^{-}}(3 x+2) & =\lim _{x \rightarrow 10^{+}}(4 x+b) \\
32 & =40+b \\
b & =-8
\end{aligned}
$$

7. a represents the x-value where the function is discontinuous, i.e. where the denominator goes to zero:

$$
a=3
$$

b represents the y-value that the function approaches when $x \rightarrow \infty$. Using the principle of dominant powers of x,

$$
b=\lim _{x \rightarrow \infty} \frac{2 x+12}{x-3}=\frac{2 x}{x}=2
$$

Point C is the x-intercept, i.e.

$$
\begin{aligned}
\frac{2 x+12}{x-3} & =0 \\
2 x+12 & =0 \\
x & =-6
\end{aligned}
$$

so point C has coordinates $(-6,0)$.
Point D is the y-intercept, i.e.

$$
\begin{aligned}
y & =\frac{2(0)+12}{(0)-3} \\
& =-4
\end{aligned}
$$

so point D has coordinates $(0,-4)$.
8. (a)

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \frac{1}{\mathrm{e}^{2 x}} & =\frac{\mathrm{d}}{\mathrm{~d} x} \mathrm{e}^{-2 x} \\
& =-2 \mathrm{e}^{-2 x} \\
& =-\frac{2}{\mathrm{e}^{2 x}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \frac{5}{\mathrm{e}^{x}-1} & =\frac{0-5 \mathrm{e}^{x}}{\left(\mathrm{e}^{x}-1\right)^{2}} \\
& =-\frac{5 \mathrm{e}^{x}}{\left(\mathrm{e}^{x}-1\right)^{2}}
\end{aligned}
$$

Checking using the Classpad:

$\frac{d}{d \boldsymbol{x}}\left(\frac{1}{e^{2 \boldsymbol{x}}}\right)$	
$\frac{d}{d \boldsymbol{x}}\left(\frac{5}{e^{\boldsymbol{x}}-1}\right)$	$-2 \cdot e^{-2 \cdot x}$
$\frac{-5 \cdot e^{x}}{\left(e^{x}-1\right)^{2}}$	

9.

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} \mathrm{f}(x) & =3(2) \\
& =6 \\
\lim _{x \rightarrow 2^{+}} \mathrm{f}(x) & =(2)+2 \\
& =4
\end{aligned}
$$

The limit does not exist.
10.

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} \mathrm{g}(x) & =1+2 \\
& =3 \\
\lim _{x \rightarrow 1^{+}} \mathrm{g}(x) & =3(1) \\
& =3 \\
\therefore \quad \lim _{x \rightarrow 1} \mathrm{~g}(x) & =3
\end{aligned}
$$

11. (a)

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} \mathrm{f}(x) & =\frac{2(0)+3}{0-1} \\
& =-3
\end{aligned}
$$

(b)

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \mathrm{f}(x) & =\frac{0-6}{0+2} \\
& =-3
\end{aligned}
$$

(c)
(d)

$$
\lim _{x \rightarrow 0} \mathrm{f}(x)=-3
$$

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \mathrm{f}(x) & =\lim _{x \rightarrow-\infty} \frac{2 x+3}{x-1} \\
& =2
\end{aligned}
$$

(e)

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \mathrm{f}(x) & =\lim _{x \rightarrow-\infty} \frac{x-6}{x+1} \\
& =1
\end{aligned}
$$

12. (a) The absolute value function is continuous, so the limit is equal to the value of the function:

$$
\lim _{x \rightarrow 0}(|x|+3)=|0|+3=3
$$

(b) The limit does not exist. The limit from the left is -1 while from the right it is 1 .
(c) The function is continuous at $x=0$ (its only discontinuity is at $x=3$) so

$$
\lim _{x \rightarrow 0}=\frac{|0-3|}{0-3}=-1
$$

(d) The limit does not exist. The limit from the left is -1 while from the right it is 1 .
13. We need only concern ourselves with continuity and differentiabilty at $x=2$ as everywhere else we are dealing with polynomial functions.
For continuity,

$$
\begin{aligned}
-23(-2)-28 & =a(-2)+b\left((-2)^{2}\right) \\
-2 a+4 b & =18 \\
-a+2 b & =9
\end{aligned}
$$

For differentiability,

$$
\begin{aligned}
-23 & =a+2 b(-2) \\
a-4 b & =-23
\end{aligned}
$$

Solving simultaneously

$$
\begin{aligned}
-2 b & =-14 \\
b & =7 \\
-a+2 b & =9 \\
-a+14 & =9 \\
a & =5
\end{aligned}
$$

14.

$$
\begin{aligned}
z-2+7 \mathrm{i} & = \pm 5 \mathrm{i} \\
x & =2-12 \mathrm{i} \\
\text { or } \quad x & =2-2 \mathrm{i}
\end{aligned}
$$

15. $\quad \sin 105^{\circ}=\sin \left(60^{\circ}+45^{\circ}\right)$

$$
=\sin 60^{\circ} \cos 45^{\circ}+\cos 60^{\circ} \sin 45^{\circ}
$$

$$
=\frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2}+\frac{1}{2} \frac{\sqrt{2}}{2}
$$

$$
=\frac{\sqrt{2}(\sqrt{3}+1)}{4}
$$

16. Refer to the sketches in Sadler's solutions.
(a) The gradient is positive everywhere and tends towards zero as $x \rightarrow \pm \infty$. As we approach $x=a$ from the left or the right the gradient increases without bound.
(b) Here the gradient is negative everywhere and tends towards zero as $x \rightarrow \pm \infty$. As we approach $x=a$ from the left or the right the gradient decreases without bound.
(c) The gradient is positive for $x<a$, as $x \rightarrow-\infty$ so $\mathrm{h}^{\prime}(x) \rightarrow 0$ and as $x \rightarrow a^{-}$ so $\mathrm{h}^{\prime}(x) \rightarrow \infty$.
The gradient is negative for $x>a$, as $x \rightarrow \infty$ so $\mathrm{h}^{\prime}(x) \rightarrow 0$ and as $x \rightarrow a^{+}$so $\mathrm{h}^{\prime}(x) \rightarrow-\infty$.
17. The position of the boat after 3 hours (i.e. at noon) is $3(12 \mathbf{i}+4 \mathbf{j})=(36 \mathbf{i}+12 \mathbf{j}) \mathrm{km}$. The displacement from there to the harbour at A is

$$
(42 \mathbf{i}+9 \mathbf{j})-(36 \mathbf{i}+12 \mathbf{j})=(6 \mathbf{i}-3 \mathbf{j}) \mathrm{km}
$$

Let the boat's velocity be $\mathbf{v}=(a \mathbf{i}+b \mathbf{j}) \mathrm{km} / \mathrm{h}$. To steam directly to A , the vector sum of this velocity and that of the wind and current must be a scalar multiple of this displacement:

$$
(a \mathbf{i}+b \mathbf{j})+(6 \mathbf{i}+2 \mathbf{j})=k(6 \mathbf{i}-3 \mathbf{j})
$$

(where $k=\frac{1}{t}$ for t the time in hours)

$$
\begin{aligned}
(a \mathbf{i}+b \mathbf{j}) & =k(6 \mathbf{i}-3 \mathbf{j})-(6 \mathbf{i}+2 \mathbf{j}) \\
a & =6 k-6 \\
b & =-3 k-2
\end{aligned}
$$

From the boats speed of $10 \mathrm{~km} / \mathrm{h}$,

$$
\begin{aligned}
a^{2}+b^{2} & =10^{2} \\
(6 k-6)^{2}+(-3 k-2)^{2} & =100 \\
36 k^{2}-72 k+36+9 k^{2}+12 k+4-100 & =0 \\
45 k^{2}-60 k-60 & =0 \\
3 k^{2}-4 k-4 & =0 \\
3 k^{2}-6 k+2 k-4 & =0 \\
3 k(k-2)+2(k-2) & =0 \\
(k-2)(3 k+2) & =0 \\
k & =2
\end{aligned}
$$

(we can ignore the other root because it gives negative time)

$$
\begin{aligned}
a & =6 k-6 \\
& =6 \\
b & =-3 k-2 \\
& =-8 \\
t & =\frac{1}{2}
\end{aligned}
$$

The velocity of the boat should be set to ($6 \mathbf{i}$ $8 \mathbf{j}) \mathrm{km} / \mathrm{h}$. The boat will arrive after half an hour, i.e. at $12: 30 \mathrm{pm}$.

