Chapter 5

Exercise 5A

1. $\frac{\mathrm{d} y}{\mathrm{~d} x}=2\left(4 x^{2-1}\right)=8 x$
2. $\frac{\mathrm{d} y}{\mathrm{~d} x}=2\left(3 x^{2-1}\right)+1\left(7 x^{1-1}\right)=6 x+7$
3. $\frac{\mathrm{d} y}{\mathrm{~d} x}=1\left(12 x^{0}\right)-3\left(5 x^{2}\right)=12-15 x^{2}$
4. $\frac{\mathrm{d}}{\mathrm{d} x}\left(6 x^{3}\right)=3\left(6 x^{3-1}\right)=18 x^{2}$
5. $\frac{\mathrm{d}}{\mathrm{d} x}\left(6 x^{3}+3\right)=3\left(6 x^{3-1}\right)+0=18 x^{2}$
6. $\frac{\mathrm{d}}{\mathrm{d} x}\left(3 x^{3}-x+1\right)=3\left(3 x^{3-1}\right)-1\left(x^{1-1}\right)+0=9 x^{2}-1$
7. $\mathrm{f}^{\prime}(x)=0$
8. $\mathrm{f}^{\prime}(x)=2 x-3\left(4 x^{2}\right)+1=2 x-12 x^{2}+1$
9. $\mathrm{f}^{\prime}(x)=0+1+2 x+3 x^{2}=1+2 x+3 x^{2}$
10. $\frac{\mathrm{d} y}{\mathrm{~d} x}=(x-2) \frac{\mathrm{d}}{\mathrm{d} x}(x+5)+(x+5) \frac{\mathrm{d}}{\mathrm{d} x}(x-2)$

$$
=(x-2)+(x+5)
$$

$$
=2 x+3
$$

11. $\frac{\mathrm{d} y}{\mathrm{~d} x}=(2 x+3) \frac{\mathrm{d}}{\mathrm{d} x}(3 x+1)+(3 x+1) \frac{\mathrm{d}}{\mathrm{d} x}(2 x+3)$
$=3(2 x+3)+2(3 x+1)$
$=6 x+9+6 x+2$
$=12 x+11$
12. $\frac{\mathrm{d} y}{\mathrm{~d} x}=\left(x^{2}-5\right) \frac{\mathrm{d}}{\mathrm{d} x}(x+7)+(x+7) \frac{\mathrm{d}}{\mathrm{d} x}\left(x^{2}-5\right)$

$$
=\left(x^{2}-5\right)+2 x(x+7)
$$

$$
=x^{2}-5+2 x^{2}+14 x
$$

$$
=3 x^{2}+14 x-5
$$

13.

$$
\text { at } x=2, \quad \begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =6 x \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =6 \times 2 \\
& =12
\end{aligned}
$$

14.

$$
\text { at } x=-1, \quad \begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =6 x^{2} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =6(-1)^{2} \\
& =6
\end{aligned}
$$

15.

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =1\left(x^{2}-1\right)+2 x(x-2) \\
& =x^{2}-1+2 x^{2}-4 x \\
& =3 x^{2}-4 x-1
\end{aligned}
$$

at $x=3$,

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =3\left(3^{2}\right)-4(3)-1 \\
& =27-12-1 \\
& =14
\end{aligned}
$$

16. This question as it stands would be simplest done using the Chain Rule (see the following section in the text). To answer it using only the product rule there are a couple of approaches that could be used. The simplest, and the one appropriate at this stage of learning, is to first simplify and expand the square factor.

$$
\begin{aligned}
y & =(x+3)(x-2 x+1)^{2} \\
& =(x+3)(-x+1)^{2} \\
& =(x+3)\left(x^{2}-2 x+1\right) \\
\frac{\mathrm{d} y}{\mathrm{~d} x} & =1\left(x^{2}-2 x+1\right)+(2 x-2)(x+3) \\
& =x^{2}-2 x+1+2 x^{2}+6 x-2 x-6 \\
& =3 x^{2}+2 x-5
\end{aligned}
$$

at $x=2$,

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =3(2)^{2}+2(2)-5 \\
& =12+4-5 \\
& =11
\end{aligned}
$$

17.

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =4 x \\
4 x & =-8 \\
x & =-2 \\
y & =2 x^{2} \\
& =2(-2)^{2} \\
& =8
\end{aligned}
$$

The curve has a gradient of -8 at $(-2,8)$.
18.

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =3 x^{2}-7 \\
3 x^{2}-7 & =5 \\
3 x^{2} & =12 \\
x^{2} & =4 \\
x & = \pm 2
\end{aligned}
$$

At $x=2$

$$
\begin{aligned}
y & =(2)^{3}-7(2) \\
& =8-14 \\
& =-6
\end{aligned}
$$

At $x=-2$

$$
\begin{aligned}
y & =(-2)^{3}-7(-2) \\
& =-8+14 \\
& =6
\end{aligned}
$$

The curve has a gradient of 5 at $(2,-6)$ and $(-2,6)$
19. $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x$. At $x=-2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 \times-2=-4$. The equation of the tangent line (using the gradientpoint form for the equation of a line):

$$
\begin{aligned}
\left(y-y_{1}\right) & =m\left(x-x_{1}\right) \\
y-4 & =-4(x--2) \\
y & =-4(x+2)+4 \\
& =-4 x-8+4 \\
& =-4 x-4
\end{aligned}
$$

20. $\frac{\mathrm{d} y}{\mathrm{~d} x}=5-3 x^{2}$. At $x=1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=5-3(1)^{2}=2$. The equation of the tangent line is:

$$
\begin{aligned}
\left(y-y_{1}\right) & =m\left(x-x_{1}\right) \\
y-4 & =2(x-1) \\
y & =2(x-1)+4 \\
& =2 x-2+4 \\
& =2 x+2
\end{aligned}
$$

21. (a) $f^{\prime}(x)=3-6 x^{2}$
(b) $f^{\prime}(2)=3-6(2)^{2}=3-24=-21$
22. We expect $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{5}\right)=5 x^{4}$.

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(x^{2}\right)\left(x^{3}\right)\right) & =2 x\left(x^{3}\right)+3 x^{2}\left(x^{2}\right) \\
& =2 x^{4}+3 x^{4} \\
& =5 x^{4}
\end{aligned}
$$

23. The gradient of the line is 5 . The gradient of the curve is

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-6 x-4
$$

so the x-coordinate is the solution to $\frac{\mathrm{d} y}{\mathrm{~d} x}=5$:

$$
\begin{aligned}
3 x^{2}-6 x-4 & =5 \\
3 x^{2}-6 x-9 & =0 \\
3(x-3)(x+1) & =0 \\
x & =3 \\
\text { or } \quad x & =-1
\end{aligned}
$$

For $x=3$,

$$
\begin{aligned}
y & =x^{3}-3 x^{2}-4 x+1 \\
& =27-27-12+1 \\
& =-11
\end{aligned}
$$

For $x=-1$,

$$
\begin{aligned}
y & =x^{3}-3 x^{2}-4 x+1 \\
& =-1-3+4+1 \\
& =1
\end{aligned}
$$

The curve has the same gradient as the line at $(3,-11)$ and at $(-1,1)$.
24. For $\mathrm{f}(x)=\frac{1}{x}$:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\mathrm{f}(x+h)-\mathrm{f}(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x}{x(x+h)}-\frac{x+h}{x(x+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x-(x+h)}{x(x+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{-h}{x(x+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-1}{x(x+h)} \\
& =-\frac{1}{x^{2}}
\end{aligned}
$$

This confirms that $\frac{\mathrm{d}}{\mathrm{d} x} \frac{1}{x}=-\frac{1}{x^{2}}$.
For $\mathrm{f}(x)=\sqrt{x}$:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\mathrm{f}(x+h)-\mathrm{f}(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{\sqrt{x+h}-\sqrt{x}}{h} \times \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}\right) \\
& =\lim _{h \rightarrow 0} \frac{(x+h)-x}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}} \\
& =\frac{1}{\sqrt{x}+\sqrt{x}} \\
& =\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

This confirms that $\frac{\mathrm{d}}{\mathrm{d} x} \sqrt{x}=\frac{1}{2 \sqrt{x}}$.

Exercise 5B

1.

$$
\begin{aligned}
u & =2 x \\
v & =x-1 \\
\frac{\mathrm{~d}}{\mathrm{~d} x} \frac{2 x}{x-1} & =\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}} \\
& =\frac{2(x-1)-1(2 x)}{(x-1)^{2}} \\
& =\frac{2 x-2-2 x}{x^{2}-2 x+1} \\
& =-\frac{2}{x^{2}-2 x+1}
\end{aligned}
$$

2. $\quad \frac{\mathrm{d}}{\mathrm{d} x} \frac{5 x}{2 x-3}=\frac{5(2 x-3)-2(5 x)}{(2 x-3)^{2}}$

$$
\begin{aligned}
& =\frac{10 x-15-10 x}{(2 x-3)^{2}} \\
& =-\frac{15}{(2 x-3)^{2}}
\end{aligned}
$$

3. $\quad \frac{\mathrm{d}}{\mathrm{d} x} \frac{3 x}{2 x-1}=\frac{3(2 x-1)-2(3 x)}{(2 x-1)^{2}}$

$$
\begin{aligned}
& =\frac{6 x-3-6 x}{(2 x-1)^{2}} \\
& =-\frac{3}{(2 x-1)^{2}}
\end{aligned}
$$

4. $\frac{\mathrm{d}}{\mathrm{d} x} \frac{3 x}{1-5 x}=\frac{3(1-5 x)--5(3 x)}{(1-5 x)^{2}}$

$$
\begin{aligned}
& =\frac{3-15 x+15 x}{(1-5 x)^{2}} \\
& =\frac{3}{(1-5 x)^{2}}
\end{aligned}
$$

5. $\quad \frac{\mathrm{d}}{\mathrm{d} x} \frac{5 x+2}{2 x-1}=\frac{5(2 x-1)-2(5 x+2)}{(2 x-1)^{2}}$

$$
\begin{aligned}
& =\frac{10 x-5-10 x-4)}{(2 x-1)^{2}} \\
& =-\frac{9}{(2 x-1)^{2}}
\end{aligned}
$$

6. $\frac{\mathrm{d}}{\mathrm{d} x} \frac{x-6}{5-2 x}=\frac{1(5-2 x)--2(x-6)}{(5-2 x)^{2}}$

$$
\begin{aligned}
& =\frac{5-2 x+2 x-12}{(5-2 x)^{2}} \\
& =-\frac{7}{(5-2 x)^{2}}
\end{aligned}
$$

7. $\frac{\mathrm{d}}{\mathrm{d} x} \frac{7-3 x}{5+2 x}=\frac{-3(5+2 x)-2(7-3 x)}{(5+2 x)^{2}}$

$$
\begin{aligned}
& =\frac{-15-6 x-14+6 x}{(5+2 x)^{2}} \\
& =-\frac{29}{(5+2 x)^{2}}
\end{aligned}
$$

8. $\quad \frac{\mathrm{d}}{\mathrm{d} x} \frac{3 x}{x^{2}-1}=\frac{3\left(x^{2}-1\right)-2 x(3 x)}{\left(x^{2}-1\right)^{2}}$

$$
\begin{aligned}
& =\frac{3 x^{2}-3-6 x^{2}}{\left(x^{2}-1\right)^{2}} \\
& =\frac{-3 x^{2}-3}{\left(x^{2}-1\right)^{2}} \\
& =-\frac{3 x^{2}+3}{\left(x^{2}-1\right)^{2}}
\end{aligned}
$$

9. $\quad \frac{\mathrm{d}}{\mathrm{d} x} \frac{3 x-4}{3 x^{2}+1}=\frac{3\left(3 x^{2}+1\right)-6 x(3 x-4)}{\left(3 x^{2}+1\right)^{2}}$

$$
\begin{aligned}
& =\frac{9 x^{2}+3-18 x^{2}+24 x}{\left(3 x^{2}+1\right)^{2}} \\
& =\frac{-9 x^{2}+3+24 x}{\left(3 x^{2}+1\right)^{2}} \\
& =-\frac{3\left(3 x^{2}-8 x-1\right)}{\left(3 x^{2}+1\right)^{2}}
\end{aligned}
$$

10.

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{\mathrm{d} y}{\mathrm{~d} u} \frac{\mathrm{~d} u}{\mathrm{~d} x} \\
& =5(6 x-2) \\
& =30 x-10
\end{aligned}
$$

11.

$$
\begin{aligned}
\frac{\mathrm{d} p}{\mathrm{~d} t} & =\frac{\mathrm{d} p}{\mathrm{~d} s} \frac{\mathrm{~d} s}{\mathrm{~d} t} \\
& =10 s \times-2 \\
& =-20(3-2 t) \\
& =40 t-60
\end{aligned}
$$

12.

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{\mathrm{d} y}{\mathrm{~d} u} \frac{\mathrm{~d} u}{\mathrm{~d} p} \frac{\mathrm{~d} p}{\mathrm{~d} x} \\
& =(6 u)(2)(2) \\
& =24 u \\
& =24(2 p-1) \\
& =48 p-24 \\
& =48(2 x+1)-24 \\
& =96 x+24
\end{aligned}
$$

13.

$$
\begin{aligned}
u & =2 x+3 \\
y & =u^{3} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{\mathrm{d} y}{\mathrm{~d} u} \frac{\mathrm{~d} u}{\mathrm{~d} x} \\
& =\left(3 u^{2}\right)(2) \\
& =6(2 x+3)^{2}
\end{aligned}
$$

14.

$$
\begin{aligned}
u & =5-3 x \\
y & =u^{5} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{\mathrm{d} y}{\mathrm{~d} u} \frac{\mathrm{~d} u}{\mathrm{~d} x} \\
& =\left(5 u^{4}\right)(-3) \\
& =-15(5-3 x)^{4}
\end{aligned}
$$

15.

$$
\begin{aligned}
f^{\prime}(x) & =4(3 x+5)^{3}(3) \\
& =12(3 x+5)^{3}
\end{aligned}
$$

16.

$$
\begin{aligned}
f^{\prime}(x) & =4(x+5)^{3}(1) \\
& =4(x+5)^{3}
\end{aligned}
$$

17.

$$
\begin{aligned}
f^{\prime}(x) & =7(2 x+3)^{6}(2) \\
& =14(2 x+3)^{6}
\end{aligned}
$$

18.

$$
\begin{aligned}
f^{\prime}(x) & =3\left(5 x^{2}+2\right)^{2}(10 x) \\
& =30 x\left(5 x^{2}+2\right)^{2}
\end{aligned}
$$

19.

$$
\begin{aligned}
f^{\prime}(x) & =3(1-2 x)^{2}(-2) \\
& =-6(1-2 x)^{2}
\end{aligned}
$$

20.

$$
\begin{aligned}
f^{\prime}(x) & =5+5(4 x+1)^{4}(4) \\
& =5+20(4 x+1)^{4}
\end{aligned}
$$

21. $\frac{\mathrm{d} y}{\mathrm{~d} x}=(x-3)^{5} \frac{\mathrm{~d}}{\mathrm{~d} x}\left(x^{2}\right)+x^{2} \frac{\mathrm{~d}}{\mathrm{~d} x}(x-3)^{5}$

$$
=2 x(x-3)^{5}+x^{2}\left(5(x-3)^{4}\right)
$$

$$
=2 x(x-3)(x-3)^{4}+5 x^{2}(x-3)^{4}
$$

$$
=\left(2 x^{2}-6 x\right)(x-3)^{4}+5 x^{2}(x-3)^{4}
$$

$$
=\left(7 x^{2}-6 x\right)(x-3)^{4}
$$

22. $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=(x+1)^{3} \frac{\mathrm{~d}}{\mathrm{~d} x}(3 x)+3 x \frac{\mathrm{~d}}{\mathrm{~d} x}(x+1)^{3}$

$$
=3(x+1)^{3}+3 x\left(3(x+1)^{2}\right)
$$

$$
=3\left((x+1)(x+1)^{2}+3 x(x+1)^{2}\right)
$$

$$
=3(4 x+1)(x+1)^{2}
$$

23. $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\left(x^{2}+3\right)^{4} \frac{\mathrm{~d}}{\mathrm{~d} x}(2 x)+2 x \frac{\mathrm{~d}}{\mathrm{~d} x}\left(x^{2}+3\right)^{4}$

$$
=2\left(x^{2}+3\right)^{4}+2 x\left(4\left(x^{2}+3\right)^{3}(2 x)\right)
$$

$$
=2\left(x^{2}+3\right)^{4}+16 x^{2}\left(x^{2}+3\right)^{3}
$$

$$
=2\left(x^{2}+3\right)\left(x^{2}+3\right)^{3}+16 x^{2}\left(x^{2}+3\right)^{3}
$$

$$
=\left(2 x^{2}+6+16 x^{2}\right)\left(x^{2}+3\right)^{3}
$$

$$
=6\left(3 x^{2}+1\right)\left(x^{2}+3\right)^{3}
$$

24. $\frac{\mathrm{d}}{\mathrm{d} x}((5 x-1)(x+5))$

$$
\begin{aligned}
& =(x+5) \frac{\mathrm{d}}{\mathrm{~d} x}(5 x-1)+(5 x-1) \frac{\mathrm{d}}{\mathrm{~d} x}(x+5) \\
& =5(x+5)+(5 x-1) \\
& =5 x+25+5 x-1 \\
& =10 x+24
\end{aligned}
$$

25. $\frac{\mathrm{d}}{\mathrm{d} x} \frac{2 x+3}{3 x+2}$

$$
\begin{aligned}
& =\frac{(3 x+2) \frac{\mathrm{d}}{\mathrm{~d} x}(2 x+3)-(2 x+3) \frac{\mathrm{d}}{\mathrm{~d} x}(3 x+2)}{(3 x+2)^{2}} \\
& =\frac{2(3 x+2)-3(2 x+3)}{(3 x+2)^{2}} \\
& =\frac{6 x+4-6 x-9}{(3 x+2)^{2}} \\
& =-\frac{5}{(3 x+2)^{2}}
\end{aligned}
$$

26. $\frac{\mathrm{d}}{\mathrm{d} x}\left(3 x^{2}-1\right)^{4}=4\left(3 x^{2}-1\right)^{3} \frac{\mathrm{~d}}{\mathrm{~d} x}\left(3 x^{2}-1\right)$

$$
\begin{aligned}
& =4\left(3 x^{2}-1\right)^{3}(6 x) \\
& =24 x\left(3 x^{2}-1\right)^{3}
\end{aligned}
$$

27. $\frac{\mathrm{d}}{\mathrm{d} x}\left(2 x^{2}-3 x+1\right)^{3}$

$$
\begin{aligned}
& =3\left(2 x^{2}-3 x+1\right)^{2} \frac{\mathrm{~d}}{\mathrm{~d} x}\left(2 x^{2}-3 x+1\right) \\
& =3\left(2 x^{2}-3 x+1\right)^{2}(4 x-3) \\
& =3(4 x-3)\left(2 x^{2}-3 x+1\right)^{2}
\end{aligned}
$$

28. The quotient rule might seem the obvious approach to this one, but it's easier to simplify before differentiating:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \frac{x^{3}+5 x}{x} & =\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2}+5\right) \\
& =2 x
\end{aligned}
$$

Does the quotient rule give the same answer?

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \frac{x^{3}+5 x}{x} & =\frac{x \frac{\mathrm{~d}}{\mathrm{~d} x}\left(x^{3}+5 x\right)-\left(x^{3}+5 x\right) \frac{\mathrm{d}}{\mathrm{~d} x}(x)}{x^{2}} \\
& =\frac{x\left(3 x^{2}+5\right)-\left(x^{3}+5 x\right)}{x^{2}} \\
& =\frac{3 x^{3}+5 x-x^{3}-5 x}{x^{2}} \\
& =\frac{2 x^{3}}{x^{2}} \\
& =2 x
\end{aligned}
$$

29. $\frac{\mathrm{d}}{\mathrm{d} x} \frac{x^{2}+4 x+3}{x+1}$
$=\frac{(x+1) \frac{\mathrm{d}}{\mathrm{d} x}\left(x^{2}+4 x+3\right)-\left(x^{2}+4 x+3\right) \frac{\mathrm{d}}{\mathrm{d} x}(x+1)}{(x+1)^{2}}$
$=\frac{(x+1)(2 x+4)-\left(x^{2}+4 x+3\right)}{(x+1)^{2}}$
$=\frac{2 x^{2}+4 x+2 x+4-x^{2}-4 x-3}{(x+1)^{2}}$
$=\frac{x^{2}+2 x+1}{x^{2}+2 x+1}$
$=1$
(This would be simpler if you realised that $\frac{x^{2}+4 x+3}{x+1}=\frac{(x+3)(x+1)}{x+1}$ then simplify before differentiating.)
30.

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =4(5-2 x)^{3}(-2) \\
& =-8(5-2 x)^{3}
\end{aligned}
$$

At $x=2$ this evaluates to

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =-8(5-2(2))^{3} \\
& =-8(1)^{3} \\
& =-8
\end{aligned}
$$

31. $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4(x-3)-4 x}{(x-3)^{2}}$

$$
\begin{aligned}
& =\frac{4 x-12-4 x}{(x-3)^{2}} \\
& =-\frac{12}{(x-3)^{2}}
\end{aligned}
$$

At $x=5$ this evaluates to

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =-\frac{12}{((5)-3)^{2}} \\
& =-\frac{12}{2^{2}} \\
& =-3
\end{aligned}
$$

32.

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{7 x^{6}\left(x^{2}\right)-2 x\left(x^{7}\right)}{\left(x^{2}\right)^{2}} \\
& =\frac{7 x^{8}-2 x^{8}}{x^{4}} \\
& =\frac{5 x^{8}}{x^{4}} \\
& =5 x^{4}
\end{aligned}
$$

(just as expected.)
33. The gradient function is

$$
\begin{aligned}
y^{\prime} & =3(2 x-5)^{2}(2) \\
& =6(2 x-5)^{2}
\end{aligned}
$$

and at $x=2$ this evaluates to

$$
\begin{aligned}
y^{\prime} & =6(2(2)-5)^{2} \\
& =6(-1)^{2} \\
& =6
\end{aligned}
$$

The gradient-point form for the equation of a line:

$$
\begin{aligned}
\left(y-y_{1}\right) & =m\left(x-x_{1}\right) \\
y-(-1) & =6(x-2) \\
y+1 & =6 x-12 \\
y & =6 x-13
\end{aligned}
$$

34. Where the curve and line intersect,

$$
\begin{aligned}
\frac{5 x^{2}}{x-1} & =5 x+3 \\
5 x^{2} & =(x-1)(5 x+3) \\
& =5 x^{2}+3 x-5 x-3 \\
0 & =-2 x-3 \\
2 x & =-3 \\
x & =-1.5 \\
y & =5 x+3 \\
& =5(-1.5)+3 \\
& =-4.5
\end{aligned}
$$

The line and curve intersect at $(-1.5,-4.5)$.

The gradient function of the curve is

$$
y^{\prime}=\frac{(x-1)(10 x)-\left(5 x^{2}\right)(1)}{\left.(x-1)^{2}\right)}
$$

At $x=-1.5$ this evaluates to

$$
\begin{aligned}
y^{\prime} & =\frac{(-1.5-1)(10)(-1.5)-\left(5(-1.5)^{2}\right)(1)}{(-1.5-1)^{2}} \\
& =\frac{37.5-11.25}{(-2.5)^{2}} \\
& =\frac{26.25}{6.25} \\
& =\frac{105}{25} \\
& =4.2
\end{aligned}
$$

35. The gradient function is

$$
\begin{aligned}
y^{\prime} & =\frac{(x-2)(2 x)-\left(x^{2}\right)(1)}{(x-2)^{2}} \\
& =\frac{2 x^{2}-4 x-x^{2}}{(x-2)^{2}} \\
& =\frac{x^{2}-4 x}{(x-2)^{2}}
\end{aligned}
$$

At $x=3$ this evaluates to

$$
\begin{aligned}
y^{\prime} & =\frac{3^{2}-4 \times 3}{(3-2)^{2}} \\
& =-3
\end{aligned}
$$

The gradient m of the normal is given by

$$
\begin{aligned}
-3 m & =-1 \\
m & =\frac{1}{3}
\end{aligned}
$$

Then using the gradient-point form to find the equation of the normal

$$
\begin{aligned}
\left(y-y_{1}\right) & =m\left(x-x_{1}\right) \\
y-9 & =\frac{1}{3}(x-3) \\
y & =\frac{x}{3}+8
\end{aligned}
$$

36. The gradient function is

$$
\begin{aligned}
y^{\prime} & =(2 x-5)^{3}(2)+(2 x-1)\left(3(2 x-5)^{2}(2)\right) \\
& =2(2 x-5)^{3}+6(2 x-1)(2 x-5)^{2}
\end{aligned}
$$

Factorising:

$$
\begin{aligned}
y^{\prime} & =2(2 x-5)^{2}((2 x-5)+3(2 x-1)) \\
& =2(2 x-5)^{2}(2 x-5+6 x-3) \\
& =2(2 x-5)^{2}(8 x-8) \\
& =16(2 x-5)^{2}(x-1)
\end{aligned}
$$

Thus the gradient is zero where

$$
\begin{aligned}
2 x-5 & =0 \\
x & =2.5
\end{aligned}
$$

or $x-1=0$

$$
x=1
$$

Substituting these values back into the original equation to find their corresponding y values:

$$
\begin{aligned}
y & =(2(2.5)-1)(2(2.5)-5)^{3} \\
& =4 \times 0^{3} \\
& =0
\end{aligned}
$$

$$
\text { or } y=(2(1)-1)(2(1)-5)^{3}
$$

$$
=1 \times(-3)^{3}
$$

$$
=-27
$$

The gradient of the curve is zero at $(2.5,0)$ and at $(1,-27)$.
37. The gradient function is

$$
\begin{aligned}
y^{\prime} & =\frac{(2 x+1)(2 x+2)-\left(x^{2}+2 x+3\right)(2)}{(2 x+1)^{2}} \\
& =\frac{\left(4 x^{2}+4 x+2 x+2\right)-\left(2 x^{2}+4 x+6\right)}{(2 x+1)^{2}} \\
& =\frac{2 x^{2}+2 x-4}{(2 x+1)^{2}} \\
& =\frac{2\left(x^{2}+x-2\right)}{(2 x+1)^{2}} \\
& =\frac{2(x+2)(x-1)}{(2 x+1)^{2}}
\end{aligned}
$$

Thus the gradient is zero where

$$
\begin{aligned}
x+2 & =0 \\
x & =-2
\end{aligned}
$$

or $x-1=0$

$$
x=1
$$

Substituting these values back into the original equation to find their corresponding y values:

$$
\begin{aligned}
y & =\frac{(-2)^{2}+2(-2)+3}{2(-2)+1} \\
& =-1 \\
\text { or } y & =\frac{(1)^{2}+2(1)+3}{2(1)+1} \\
& =2
\end{aligned}
$$

The gradient of the curve is zero at $(-2,-1)$ and at $(1,2)$.
38. (a) First, find a by substituting $x=-3$ into the
equation of the curve:

$$
\begin{aligned}
a & =\frac{5(-3)-7}{2(-3)+10} \\
& =\frac{-22}{4} \\
& =-5.5
\end{aligned}
$$

Now b is the gradient of the tangent line at $(-3,-5.5)$ and hence the gradient of the curve at that point, so we can find b by substituting $x=-3$ into the gradient function.

$$
\begin{aligned}
y^{\prime} & =\frac{(2 x+10)(5)-(5 x-7)(2)}{(2 x+10)^{2}} \\
& =\frac{10 x+50-10 x+14}{(2 x+10)^{2}} \\
& =\frac{64}{(2 x+10)^{2}} \\
b & =\frac{64}{(2(-3)+10)^{2}} \\
& =\frac{64}{4^{2}} \\
& =4
\end{aligned}
$$

The equation of the tangent line is

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-a & =b(x--3) \\
y--5.5 & =4(x+3) \\
y+5.5 & =4 x+12 \\
y & =4 x+6.5
\end{aligned}
$$

hence $c=6.5$.
(b) Solve $y^{\prime}=b=4$ (already knowing that $x=-3$ is one solution):

$$
\begin{aligned}
y^{\prime} & =4 \\
\frac{64}{(2 x+10)^{2}} & =4 \\
\frac{16}{(2 x+10)^{2}} & =1 \\
16 & =(2 x+10)^{2} \\
2 x+10 & = \pm 4 \\
2 x & =-10 \pm 4 \\
x & =-5 \pm 2 \\
x & =-7 \\
\text { or } \quad x & =-3
\end{aligned}
$$

Substituting $x=-7$ into the original equation:

$$
\begin{aligned}
y & =\frac{5(-7)-7}{2(-7)+10} \\
& =\frac{-42}{-4} \\
& =10.5
\end{aligned}
$$

The other point where the tangent to the curve is parallel to $y=b x+3$ has coordinates $(-7,10.5)$.
39. (a) First, find a by substituting $x=3$ and $y^{\prime}=2$ into the gradient equation and solving. (Remember, a is a constant, so its derivative is zero.)

$$
\begin{aligned}
y^{\prime} & =\frac{(2 x-11)(-6)-(a-6 x)(2)}{(2 x-11)^{2}} \\
& =\frac{-12 x+66-2 a+12 x}{(2 x-11)^{2}} \\
& =\frac{66-2 a}{(2 x-11)^{2}} \\
2 & =\frac{66-2 a}{(2(3)-11)^{2}} \\
2 & =\frac{66-2 a}{(-5)^{2}} \\
2 & =\frac{66-2 a}{25} \\
66-2 a & =50 \\
-2 a & =-16 \\
a & =8
\end{aligned}
$$

Now substitute this and $x=3$ into the original equation to find b :

$$
\begin{aligned}
b & =\frac{8-6(3)}{2(3)-11} \\
& =\frac{-10}{-5} \\
& =2
\end{aligned}
$$

(b) Solve $y^{\prime}=2$ (already knowing that $x=3$ is one solution):

$$
\begin{aligned}
y^{\prime} & =2 \\
\frac{66-2 a}{(2 x-11)^{2}} & =2
\end{aligned}
$$

Substituting $a=8$:

$$
\begin{aligned}
\frac{50}{(2 x-11)^{2}} & =2 \\
\frac{25}{(2 x-11)^{2}} & =1 \\
25 & =(2 x-11)^{2} \\
2 x-11 & = \pm 5 \\
2 x & =11 \pm 5 \\
2 x & =16 \\
x & =8 \\
\text { or } \quad 2 x & =6 \\
x & =3
\end{aligned}
$$

Substituting $x=8$ and $a=8$ into the original equation:

$$
\begin{aligned}
y & =\frac{8-6(8)}{2(8)-11} \\
& =\frac{-40}{5} \\
& =-8
\end{aligned}
$$

The other point where the curve has a gradient of 2 is at $(8,-8)$.
40. From the first curve:

$$
\begin{aligned}
y^{\prime} & =(2 x-3)^{3}(1)+(x+1)\left(3(2 x-3)^{2}(2)\right) \\
& =(2 x-3)^{3}+6(x+1)(2 x-3)^{2} \\
& =(2 x-3)^{2}(2 x-3+6 x+6) \\
& =(2 x-3)^{2}(8 x+3)
\end{aligned}
$$

At $x=2$:

$$
\begin{aligned}
c & =(2(2)-3)^{2}(8(2)+3) \\
& =19
\end{aligned}
$$

Thus the gradient of all three curves at $x=2$ is 19.

From the second curve:

$$
\begin{aligned}
y^{\prime} & =6 x-\left(-a(x-1)^{-2}\right) \\
& =6 x+\frac{a}{(x-1)^{2}}
\end{aligned}
$$

At $x=2$:

$$
\begin{aligned}
19 & =6(2)+\frac{a}{(2-1)^{2}} \\
& =12+a \\
a & =7
\end{aligned}
$$

From the third curve:

$$
\begin{aligned}
y^{\prime} & =\frac{(4-x)(b)-(b x+12)(-1)}{(4-x)^{2}} \\
& =\frac{4 b-b x+b x+12}{(4-x)^{2}} \\
& =\frac{4 b+12}{(4-x)^{2}}
\end{aligned}
$$

At $x=2$:

$$
\begin{aligned}
19 & =\frac{4 b+12}{(4-2)^{2}} \\
& =b+3 \\
b & =16
\end{aligned}
$$

Miscellaneous Exercise 5

1. (a) Use the null factor law to give $x=3$ or $x=-7$.
(b)

$$
\begin{array}{rlrlrl}
2 x-5 & =0 & \text { or } & & 4 x+1 & =0 \\
2 x & =5 & & 4 x & =-1 \\
x & =2.5 & & x & =-0.25
\end{array}
$$

(c) First factorise then use the null factor law:

$$
\begin{aligned}
(x-4)(x+3) & =0 \\
x & =4 \\
\text { or } \quad x & =-3
\end{aligned}
$$

(d)

$$
(x+7)(x-2)=0
$$

$x=-7$
or $\quad x=2$
(e)

$$
\begin{aligned}
5\left(x^{2}+x-12\right) & =0 \\
5(x+4)(x-3) & =0 \\
x & =-4 \\
\text { or } \quad x & =3
\end{aligned}
$$

(f)

$$
\begin{aligned}
4\left(x^{2}+9 x-10\right) & =0 \\
4(x+10)(x-1) & =0 \\
x & =-10 \\
\text { or } \quad x & =1
\end{aligned}
$$

2. LHS:

$$
\begin{aligned}
\frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta} & =\frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta} \times \frac{\cos \theta-\sin \theta}{\cos \theta-\sin \theta} \\
& =\frac{\cos ^{2} \theta-2 \sin \theta \cos \theta+\sin ^{2} \theta}{\cos ^{2} \theta-\sin ^{2} \theta} \\
& =\frac{1-2 \sin \theta \cos \theta}{\cos ^{2} \theta-\sin ^{2} \theta} \\
& =\frac{1-\sin 2 \theta}{\cos 2 \theta}
\end{aligned}
$$

3. From the null factor law, using the first factor:

$$
\begin{aligned}
6+25 \sin \theta & =0 \\
\sin \theta & =-\frac{6}{25} \\
& =-0.24
\end{aligned}
$$

sine is negative in the 3 rd and 4 th quadrants

$$
\begin{aligned}
\theta & =\pi+\frac{\pi}{13} \\
& =\frac{14 \pi}{13} \\
\text { or } \quad \theta & =2 \pi-\frac{\pi}{13} \\
& =\frac{25 \pi}{13}
\end{aligned}
$$

using the second factor:

$$
\begin{aligned}
1-2 \cos \theta & =0 \\
\cos \theta & =0.5
\end{aligned}
$$

cosine is positive in the 1st and 4th quadrants

$$
\begin{aligned}
\theta & =\frac{\pi}{3} \\
\text { or } \quad \theta & =\frac{5 \pi}{3}
\end{aligned}
$$

4. (a) O is the midpoint of AB , so it has coordinates:

$$
\left(\frac{1+9}{2}, \frac{2+-4}{2}\right)=(5,-1)
$$

(b) The radius is the distance OA:

$$
r=\sqrt{(1-5)^{2}+(2--1)^{2}}=5
$$

(c) The vector equation of a circle radius 5 centred at $(5,-1)$ is

$$
\left|\mathbf{r}-\binom{5}{-1}\right|=5
$$

5. If the equation is not to have complex solutions, $b^{2}-4 a c$ must be non-negative:

$$
\begin{aligned}
(-q)^{2}-4(4)(3) & \geq 0 \\
q^{2}-48 & \geq 0 \\
q^{2} & \geq 48 \\
q & \geq 4 \sqrt{3} \\
\text { or } \quad q & \leq-4 \sqrt{3}
\end{aligned}
$$

6. (a)

$$
z+w=-5+2 \mathrm{i}+-3 \mathrm{i}
$$

$$
=-5-\mathrm{i}
$$

(b)

$$
\begin{aligned}
z w & =(-5+2 \mathrm{i})(-3 \mathrm{i}) \\
& =15 \mathrm{i}+6 \\
& =6+15 \mathrm{i}
\end{aligned}
$$

(c)

$$
\bar{z}=-5-2 \mathrm{i}
$$

(d)

$$
\begin{aligned}
\bar{z} \bar{w} & =(-5-2 \mathrm{i})(3 \mathrm{i}) \\
& =-15 \mathrm{i}+6 \\
& =6-15 \mathrm{i}
\end{aligned}
$$

(e)

$$
\begin{aligned}
z^{2} & =(-5+2 \mathrm{i})^{2} \\
& =25-20 \mathrm{i}-4 \\
& =21-20 \mathrm{i}
\end{aligned}
$$

$$
\begin{align*}
(z w)^{2} & =(6+15 \mathrm{i})^{2} \tag{f}\\
& =36+180 \mathrm{i}-225 \\
& =-189+180 \mathrm{i}
\end{align*}
$$

(g)

$$
\begin{aligned}
p & =\operatorname{Re}(\bar{z})+\operatorname{Im}(\bar{w}) \mathrm{i} \\
& =\operatorname{Re}(z)-\operatorname{Im}(w) \mathrm{i} \\
& =-5+3 \mathrm{i}
\end{aligned}
$$

7. Let $z=a+b \mathrm{i}$

$$
\begin{aligned}
5 z-\bar{z} & =-8+12 \mathrm{i} \\
5(a+b \mathrm{i})-(a-b \mathrm{i}) & =-8+12 \mathrm{i} \\
4 a+6 b \mathrm{i} & =-8+12 \mathrm{i} \\
a & =-2 \\
b & =2 \\
z=-2+2 \mathrm{i} &
\end{aligned}
$$

8.

$$
\begin{aligned}
(x+\mathrm{i} y)^{2} & =96-40 \mathrm{i} \\
x^{2}+2 x y \mathrm{i}-y^{2} & =96-40 \mathrm{i}
\end{aligned}
$$

From the imaginary components:

$$
\begin{aligned}
2 x y & =-40 \\
y & =-\frac{20}{x}
\end{aligned}
$$

From the real components:

$$
\begin{aligned}
x^{2}-y^{2} & =96 \\
x^{2}-\left(-\frac{20}{x}\right)^{2} & =96 \\
x^{2}-\frac{400}{x^{2}} & =96 \\
x^{4}-400 & =96 x^{2} \\
x^{4}-96 x^{2}-400 & =0 \\
\left(x^{2}-100\right)\left(x^{2}+4\right) & =0
\end{aligned}
$$

The second factor has no real solutions, so we can disregard it and focus on the first.

$$
\begin{aligned}
x^{2}-100 & =0 \\
x^{2} & =100 \\
x & = \pm 10 \\
y & =-\frac{20}{ \pm 10} \\
& =\mp 2
\end{aligned}
$$

(x, y) is $(10,-2)$ or $(-10,2)$
9. (a) $(2 y-1)(y+1)=2 y^{2}+2 y-y-1$

$$
=2 y^{2}+y-1
$$

(b)

$$
\begin{aligned}
1+\sin x & =2 \cos ^{2} x \\
& =2\left(1-\sin ^{2} x\right) \\
& =2-2 \sin ^{2} x
\end{aligned}
$$

$$
2 \sin ^{2} x+\sin x-1=0
$$

$$
(2 \sin x-1)(\sin x+1)=0
$$

From the first factor:

$$
\begin{aligned}
2 \sin x-1 & =0 \\
\sin x & =\frac{1}{2} \\
x & =\frac{\pi}{6} ; \frac{5 \pi}{6} ;-\frac{7 \pi}{6} ; \text { or }-\frac{11 \pi}{6}
\end{aligned}
$$

From the second factor:

$$
\begin{aligned}
\sin x+1 & =0 \\
\sin x & =-1 \\
x & =\frac{3 \pi}{2} ; \text { or }-\frac{\pi}{2}
\end{aligned}
$$

10. The displacement vector from ship to yacht is

$$
\begin{aligned}
\mathrm{YACHT} \mathbf{r}_{\mathrm{SHIP}} & =\mathbf{r}_{\mathrm{YACHT}}-\mathbf{r}_{\mathrm{SHIP}} \\
& =(9 \mathbf{i}+8 \mathbf{j})-(10 \mathbf{i}+5 \mathbf{j}) \\
& =(-\mathbf{i}+3 \mathbf{j}) \mathrm{km}
\end{aligned}
$$

The velocity of the ship relative to the yacht is

$$
\begin{aligned}
\mathrm{SHIP} \mathbf{v}_{\mathrm{YACHT}} & =\mathbf{v}_{\mathrm{SHIP}}-\mathbf{v}_{\mathrm{YACHT}} \\
& =(8 \mathbf{i}+7 \mathbf{j})-(12 \mathbf{i}-5 \mathbf{j}) \\
& =(-4 \mathbf{i}+12 \mathbf{j}) \mathrm{km} / \mathrm{h}
\end{aligned}
$$

Since ${ }_{\text {YACHT }} \mathbf{r}_{\text {SHIP }}=0.25_{\text {SHIP }} \mathbf{v}_{\text {YACHT }}$, the ships will collide in a quarter of an hour, i.e. at 9:15am. The position of the collision is

$$
\begin{aligned}
\mathbf{r} & =(10 \mathbf{i}+5 \mathbf{j})+0.25(8 \mathbf{i}+7 \mathbf{j}) \\
& =(12 \mathbf{i}+6.75 \mathbf{j}) \mathrm{km}
\end{aligned}
$$

11. (a) The conjugate of w has the same real component and the opposite imaginary component: it's a reflection in the x-axis. Diagram B.
(b) If $z+w$ is real, then they must have opposite imaginary components. This is true for diagrams B and D.
(c) If $z w$ is real then $\operatorname{Re}(z) \times \operatorname{Im}(w)+\operatorname{Im}(z) \times$ $\operatorname{Re}(w)=0$ (since the other terms that arise from the multiplication are real).

$$
\begin{aligned}
\operatorname{Re}(z) \times \operatorname{Im}(w) & +\operatorname{Im}(z) \times \operatorname{Re}(w)=0 \\
\operatorname{Re}(z) \times \operatorname{Im}(w) & =-\operatorname{Im}(z) \times \operatorname{Re}(w) \\
\frac{\operatorname{Im}(w)}{\operatorname{Re}(w)} & =-\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}
\end{aligned}
$$

On the Argand diagram this represents points having the opposite gradient. This is true for diagrams A, B and F .
(d) Numbers with an imaginary part of 1 are shown in diagrams A and C.
(e) Numbers having the absolute value of their imaginary part equal to 1 are shown in diagrams A, B, C and D.
(f) Since w has a positive imaginary component, this is no different from part (d) above: diagrams A and C.
(g) This results in an imaginary part equal to $\operatorname{Re}(w)$ and real part equal to $-\operatorname{Im}(w)$, i.e. a 90° rotation. This is shown in diagram E.
(h) If we multiply $\frac{\bar{w}}{z}$ by $\frac{\bar{z}}{\bar{z}}$ the denominator will always be real, so $\frac{{ }_{w}^{w}}{z}$ is real if $\bar{w} \bar{z}$ is real. This is similar to part (c) above with a similar result:

$$
\begin{gathered}
\operatorname{Re}(\bar{w}) \times \operatorname{Im}(\bar{z})+\operatorname{Im}(\bar{w}) \times \operatorname{Re}(\bar{z})=0 \\
\operatorname{Re}(w) \times-\operatorname{Im}(z)+-\operatorname{Im}(w) \times \operatorname{Re}(z)=0 \\
-\operatorname{Re}(w) \times \operatorname{Im}(z)=\operatorname{Im}(w) \times \operatorname{Re}(z) \\
\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}=-\frac{\operatorname{Im}(w)}{\operatorname{Re}(w)}
\end{gathered}
$$

On the Argand diagram this represents points having the opposite gradient, just as in part (c). This is true for diagrams A, B and F .
12. (a) The radius is 5 . The centre has position vector $7 \mathbf{i}-\mathbf{j}$ which corresponds to Cartesian coordinates $(7,-1)$.
(b) The radius is 6 . $|\mathbf{r}-7 \mathbf{i}-\mathbf{j}|=|\mathbf{r}-(7 \mathbf{i}+\mathbf{j})|$ The centre has position vector $7 \mathbf{i}+\mathbf{j}$ which corresponds to Cartesian coordinates $(7,1)$.
(c) The radius is $\sqrt{18}=3 \sqrt{2}$. The centre is the origin, $(0,0)$.
(d) The radius is $\sqrt{75}=5 \sqrt{3}$. The centre is $(1,-8)$.
(e)

$$
\begin{aligned}
x^{2}+y^{2}+2 x & =14 y+50 \\
x^{2}+y^{2}+2 x-14 y & =50 \\
(x+1)^{2}-1+(y-7)^{2}-49 & =50 \\
(x+1)^{2}+(y-7)^{2} & =100
\end{aligned}
$$

The radius is $\sqrt{100}=10$. The centre is $(-1,7)$.
(f)

$$
x^{2}+10 x+y^{2}=151+14 y
$$

$$
x^{2}+10 x+y^{2}-14 y=151
$$

$$
(x+5)^{2}-25+(y-7)^{2}-49=151
$$

$$
(x+5)^{2}+(y-7)^{2}=225
$$

The radius is $\sqrt{225}=15$. The centre is $(-5,7)$.
13. (a) $3 x^{3}-11 x^{2}+25 x-25$

$$
\begin{aligned}
& =(a x-b)\left(x^{2}+c x+5\right) \\
& =a x^{3}+a c x^{2}+5 a x-b x^{2}-b c x-5 b \\
& =a x^{3}+(a c-b) x^{2}+(5 a-b c) x-5 b
\end{aligned}
$$

From the x^{3} term:

$$
a=3
$$

From the constant term:

$$
\begin{aligned}
-5 b & =-25 \\
b & =5
\end{aligned}
$$

From the x^{2} term:

$$
\begin{aligned}
a c-b & =-11 \\
3 c-5 & =-11 \\
3 c & =-6 \\
c & =-2
\end{aligned}
$$

(b) Use the results from (a) to factor the expression

$$
\begin{aligned}
3 x^{3}-11 x^{2}+25 x-25 & =0 \\
(3 x-5)\left(x^{2}-2 x+5\right) & =0
\end{aligned}
$$

From the linear factor:

$$
\begin{aligned}
3 x-5 & =0 \\
x & =\frac{5}{3}
\end{aligned}
$$

From the quadratic factor, using the quadratic formula:

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{2 \pm \sqrt{(-2)^{2}-4(1)(5)}}{2(1)} \\
& =\frac{2 \pm \sqrt{4-20}}{2} \\
& =\frac{2 \pm \sqrt{-16}}{2} \\
& =\frac{2 \pm 4 \mathrm{i}}{2} \\
& =1 \pm 2 \mathrm{i}
\end{aligned}
$$

14. (a)

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =4\left(2 x^{3}-5\right)^{3}\left(6 x^{2}\right) \\
& =24 x^{2}\left(2 x^{3}-5\right)^{3}
\end{aligned}
$$

(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=(2 x+1)^{3}(6 x)+\left(3 x^{2}+2\right)\left(3(2 x+1)^{2}(2)\right)$

$$
\begin{aligned}
& =6 x(2 x+1)^{3}+6\left(3 x^{2}+2\right)(2 x+1)^{2} \\
& =6(2 x+1)^{2}\left(x(2 x+1)+\left(3 x^{2}+2\right)\right) \\
& =6(2 x+1)^{2}\left(2 x^{2}+x+3 x^{2}+2\right) \\
& =6(2 x+1)^{2}\left(2 x^{2}+x+3 x^{2}+2\right) \\
& =6(2 x+1)^{2}\left(5 x^{2}+x+2\right)
\end{aligned}
$$

15. Working left to right:

- The curve begins with a small negative gradient
- Gradient decreases to a minimum at the first marked point
- At the second marked point the curve is horizontal, so the gradient is zero. After this the gradient continues to increase.
- At the third point the gradient reaches its local maximum and begins decreasing.
- At the fourth point the curve is horizontal, so the gradient is zero.
- As it approaches the vertical asymptote the gradient of the curve increases.
- On the other side of the asymptote the gradient decreases to zero at the last marked point, then increases again.

