Chapter 2

Exercise 2A

There is no need for worked solutions for any of the questions in this exercise. Refer to the answers in Sadler.

Exercise 2B

1. (a) Amplitude of $\sin (x)$ is 1 .
(b) Amplitude of $\cos (x)$ is 1 , so amplitude of $2 \cos (x)$ is 2 .
(c) Amplitude of $\cos (x)$ is 1 , so amplitude of $4 \cos (x)$ is 4 .
(d) Amplitude of $\sin (x)$ is 1 , so amplitude of $-3 \sin (2 x)$ is 3 . (Remember, amplitude can't be negative. The 2 here affects the period, not the amplitude.)
(e) Amplitude of $\cos (x)$ is 1 , so amplitude of $2 \cos \left(x+\frac{\pi}{2}\right)$ is 2 . (The $+\frac{\pi}{2}$ here affects the phase position, not the amplitude.)
(f) Amplitude of $\sin (x)$ is 1 , so amplitude of $-3 \sin (x-\pi)$ is 3 . (Remember, amplitude can't be negative. The $-\pi$ here affects the phase position, not the amplitude.)
(g) Amplitude of $\cos (x)$ is 1 , so amplitude of $5 \cos (x-2)$ is 5 . (The -2 here affects the phase position, not the amplitude.)
(h) Amplitude of $\cos (x)$ is 1 , so amplitude of $-3 \cos (2 x+\pi)$ is 3 . (Amplitude can't be negative; the 2 affects period, not amplitude and the $+\pi$ affects the phase position, not the amplitude.)
2. (a) Period of $\sin x$ is 360°.
(b) Period of $\tan x$ is 180°.
(c) Period of $\sin x$ is 360° so the period of $2 \sin x$ is also 360°. (The 2 affects amplitude, not period.)
(d) Period of $\sin x$ is 360° so the period of $\sin 2 x$ is $\frac{360}{2}=180^{\circ}$.
(e) Period of $\cos x$ is 360° so the period of $\cos \frac{x}{2}$ is $\frac{360}{\frac{1}{2}}=720^{\circ}$.
(f) Period of $\cos x$ is 360° so the period of $\cos 3 x$ is $\frac{360}{3}=120^{\circ}$.
(g) Period of $\tan x$ is 180° so the period of $3 \tan 2 x$ is $\frac{180}{2}=90^{\circ}$. (The 3 does not affect the period.)
(h) Period of $\sin x$ is 360° so the period of $3 \sin \frac{x-60^{\circ}}{3}$ is $\frac{360}{\frac{1}{3}}=1080^{\circ}$. (The first 3 affects amplitude, not period. The -60° affects phase position, not period.
3. (a) Period of $\cos x$ is 2π.
(b) Period of $\tan x$ is π.
(c) Period of $\cos x$ is 2π so the period of $3 \cos x$ is 2π. (The 3 affects amplitude, not period.)
(d) Period of $\cos x$ is 2π so the period of $2 \cos 4 x$ is $\frac{2 \pi}{4}=\frac{\pi}{2}$. (The 2 affects amplitude, not period.)
(e) The period of $\tan x$ is π so the period of $2 \tan 3 x$ is $\frac{\pi}{3}$. (The 2 does not affect period.)
(f) The period of $\sin x$ is 2π so the period of $\frac{1}{2} \sin 3 x$ is $\frac{2 \pi}{3}$. (The $\frac{1}{2}$ affects amplitude, not period.)
(g) The period of $\sin x$ is 2π so the period of $3 \sin \frac{x}{2}$ is $\frac{2 \pi}{\frac{1}{2}}=4 \pi$. (The 3 affects amplitude, not period.)
(h) The period of $2 \cos 4 x$ is $\frac{2 \pi}{4}=\frac{\pi}{2}$. (The 2 affects amplitude, not period.)
(i) Period of $\cos x$ is 2π so the period of $2 \cos (2 x-\pi)$ is $\frac{2 \pi}{2}=\pi$. (The first 2 affects amplitude, not period; the $-\pi$ affects phase position, not period.
(j) The period of $\sin x$ is 2π so the period of $2 \sin 4 \pi x$ is $\frac{2 \pi}{4 \pi}=\frac{1}{2}$. (The 2 affects amplitude, not period.)
4. (a) The maximum of $\sin x$ is 1 and occurs when $x=\frac{\pi}{2}$: coordinates $\left(\frac{\pi}{2}, 1\right)$
The minimum of $\sin x$ is -1 and occurs when $x=\frac{3 \pi}{2}$: coordinates $\left(\frac{3 \pi}{2},-1\right)$
(b) The " $2+$ " increases both maximum and minimum by 2 and has no effect on when they occur. Maximum at $\left(\frac{\pi}{2}, 3\right)$; minimum at $\left(\frac{3 \pi}{2}, 1\right)$.
(c) The "-" has the effect of reflecting the graph of $\sin (x)$ in the x-axis, so the maximum becomes the minimum and vice versa. Maximum at $\left(\frac{3 \pi}{2}, 1\right)$; minimum at $\left(\frac{\pi}{2},-1\right)$.
(d) The "2" decreases the period from 2π to π. The x-position of maximum and minimum is similarly halved to $\frac{\pi}{4}$ and $\frac{3 \pi}{4}$ respectively. In addition, the decreased period means that we will get two full cycles in the domain $0 \leq x \leq 2 \pi$ so there will be two maxima and two minima, each separated by π. The " +3 " means the maxima will have y - values of $1+3=4$ and minima of $-1+3=2$. Thus, maxima at $\left(\frac{\pi}{4}, 4\right)$ and $\left(\frac{5 \pi}{4}, 4\right)$ and minima at $\left(\frac{3 \pi}{4}, 2\right)$ and $\left(\frac{7 \pi}{4}, 2\right)$.
(e) The " $-\frac{\pi}{4}$ " moves the graph of $\sin x$ to the right $\frac{\pi}{4}$ units so the x-coordinate of maximum and minimum increase to $\frac{\pi}{2}+\frac{\pi}{4}=\frac{3 \pi}{4}$ and $\frac{3 \pi}{2}+\frac{\pi}{4}=\frac{7 \pi}{4}$. The +3 increases maximum and minimum to 4 and 2. Thus, maximum $\left(\frac{3 \pi}{4}, 4\right)$, minimum $\left(\frac{7 \pi}{4}, 2\right)$.
5. (a) The maximum value of $\sin x$ is 1 so the maximum value of $3 \sin x$ is $3 \times 1=3$. The smallest positive value of x that gives this maximum is 90°.
(b) The maximum value is 2 when $x=90+30=$ 120°.
(c) The maximum value is 2 when $x=90-30=$ 60°.
(d) The maximum value is 3 when $x=270^{\circ}$.
6. (a) The maximum value is 3 when $x=\frac{\pi}{2} \div 2=$ $\frac{\pi}{4}$.
(b) The maximum value is 5 when $x=\frac{3 \pi}{2}$.
(c) The maximum value is 2 . The maximum of $\cos x$ occurs when $x=0$ so here the maximum occurs when $x=0-\frac{\pi}{6}=-\frac{\pi}{6}$, but this is not positive so we must add the period to get $x=-\frac{\pi}{6}+2 \pi=\frac{11 \pi}{6}$
(d) The maximum value is 3 when $x=0+\frac{\pi}{6}=$ $\frac{\pi}{6}$
7. (a) Amplitude is 2, curve is not reflected, so $a=2$.
(b) Amplitude is 3, curve is not reflected, so $a=3$.
(c) Amplitude is 3, curve is reflected, so $a=$ -3 .
(d) Amplitude is about 1.4, curve is reflected, so $a=-1.4$.
8. (a) Amplitude is 3, curve is not reflected, so $a=3$.
(b) Amplitude is 2 , curve is reflected, so $a=$ -2 .
9. (a) At $x=\frac{\pi}{4}$ the y-value is 2 , so $a=2$.
(b) At $x=45^{\circ}$ the y-value is -1 , so $a=-1$.
10. (a) Amplitude is 2 , so $a=2$. Period is $\frac{2 \pi}{3}$ which is one third the period of $\sin x$ so $b=3$.
(b) Amplitude is 3 and curve is reflected, so $a=-3$. Period is π which is half the period of $\sin x$ so $b=2$.
(c) Amplitude is 2 , so $a=2$. Period is 60° which is one sixth the period of $\sin x$ so $b=6$.
(d) Amplitude is 3 , so $a=3$. Period is 90° which is one quarter the period of $\sin x$ so $b=4$.
11. (a) Amplitude is 1 so $a=1$. Period is π which is half the period of $\cos x$ so $b=2$.
(b) Amplitude is 3 and the curve is reflected, so $a=-3$. Period is $\frac{2 \pi}{3}$ which is one third the period of $\cos x$ so $b=3$.
(c) Amplitude is 3 and the curve is reflected, so $a=-3$. Period is 180° which is half the period of $\cos x$ so $b=2$.
(d) Amplitude is 2 so $a=2$. Period is 90° which is quarter the period of $\cos x$ so $b=4$.
12. (a) Amplitude is 2 , so $a=2$. The broken line is $y=2 \sin x$. The unbroken line is shifted to the right by 30° so its equation is $y=$ $2 \sin \left(x-30^{\circ}\right)$ and the smallest positive value of b is $b=30$. The second smallest value of b is obtained if we consider the unbroken line as having been moved to the right by one full cycle plus $30^{\circ}=360+30=390$.
(b) The amplitude of 2 means $c=-2$. The solid line is the reflected sine curve shifted right by 210° so $d=210$.
13. (a) Amplitude is 3 , period is $\frac{2 \pi}{\pi}=2$.
(b) See answers in Sadler.
14. (a) Amplitude is 5, period is $\frac{2 \pi}{\pi / 2}=4$.
(b) See answers in Sadler.
15. See answers in Sadler. Curves are the same as $y=\tan x$ with a vertical dilation factor of 2. The second curve is the same shape as the first, but phase-shifted 45° to the left.
16. See answers in Sadler. Amplitude of curves is 3 and period is π. The second curve is the same shape as the first, but phase-shifted $\frac{\pi}{3}$ to the right.

Exercise 2C

1. 190° is in the 3rd quadrant where tan is positive.
2. 310° is in the 4 th quadrant where \cos is positive.
3. -190° is in the 2 nd quadrant wherre \tan is negative.
4. -170° is in the 3rd quadrant where sin is negative.
5. $555^{\circ}=360^{\circ}+195^{\circ}$ so it is in the 3 rd quadrant where \sin is negative.
6. 190° is in the 3rd quadrant where cos is negative.
7. $\frac{\pi}{10}$ is in the 1 st quadrant where \tan is positive.
8. $\frac{4 \pi}{5}$ is in the 2 nd quadrant where \sin is positive.
9. $\frac{\pi}{10}$ is in the 1st quadrant where cos is positive.
10. $-\frac{\pi}{5}$ is in the 4th quadrant where sin is negative.
11. $\frac{9 \pi}{10}$ is in the 2 nd quadrant where cos is negative.
12. $\frac{13 \pi}{5}=2 \pi+\frac{3 \pi}{5}$ so it is in the 2 nd quadrant where tan is negative.
13. $140^{\circ}=180^{\circ}-40^{\circ}$ so it makes an angle of 40° with the x-axis and is in the 2nd quadrant where sin is positive, so $\sin 140^{\circ}=\sin 40^{\circ}$.
14. $250^{\circ}=180^{\circ}+70^{\circ}$ so it makes an angle of 70° with the x-axis and is in the 3rd quadrant where sin is negative, so $\sin 250^{\circ}=-\sin 70^{\circ}$.
15. $340^{\circ}=360^{\circ}-20^{\circ}$ so it makes an angle of 20° with the x-axis and is in the 4th quadrant where sin is negative, so $\sin 340^{\circ}=-\sin 20^{\circ}$.
16. $460^{\circ}=360^{\circ}+100^{\circ}=360^{\circ}+180^{\circ}-80^{\circ}$ so it makes an angle of 80° with the x-axis and is in the 2 nd quadrant where \sin is positive, so $\sin 460^{\circ}=\sin 80^{\circ}$.
17. $\frac{5 \pi}{6}=\pi-\frac{\pi}{6}$ so it makes an angle of $\frac{\pi}{6}$ with the x-axis and is in the 2 nd quadrant where \sin is positive, so $\sin \frac{5 \pi}{6}=\sin \frac{\pi}{6}$.
18. $\frac{7 \pi}{6}=\pi+\frac{\pi}{6}$ so it makes an angle of $\frac{\pi}{6}$ with the x-axis and is in the 3rd quadrant where sin is negative, so $\sin \frac{7 \pi}{6}=-\sin \frac{\pi}{6}$.
19. $\frac{11 \pi}{5}=2 \pi+\frac{\pi}{5}$ so it makes an angle of $\frac{\pi}{5}$ with the x-axis and is in the 1st quadrant where \sin is positive, so $\sin \frac{11 \pi}{5}=\sin \frac{\pi}{5}$.
20. $-\frac{\pi}{5}$ makes an angle of $\frac{\pi}{5}$ with the x-axis and is in the 4th quadrant where sin is negative, so $\sin -\frac{\pi}{5}=-\sin \frac{\pi}{5}$.
21. $100^{\circ}=180^{\circ}-80^{\circ}$ so it makes an angle of 80° with the x-axis and is in the 2 nd quadrant where cos is negative, so $\cos 100^{\circ}=-\cos 80^{\circ}$.
22. $200^{\circ}=180^{\circ}+20^{\circ}$ so it makes an angle of 20° with the x-axis and is in the 3rd quadrant where cos is negative, so $\cos 200^{\circ}=-\cos 20^{\circ}$.
23. $300^{\circ}=360^{\circ}-60^{\circ}$ so it makes an angle of 60° with the x-axis and is in the 4th quadrant where cos is positive, so $\cos 300^{\circ}=\cos 60^{\circ}$.
24. $-300^{\circ}=-360^{\circ}+60^{\circ}$ so it makes an angle of 60° with the x-axis and is in the 1st quadrant where \cos is positive, so $\cos -300^{\circ}=\cos 60^{\circ}$.
25. $\frac{4 \pi}{5}=\pi-\frac{\pi}{5}$ so it makes an angle of $\frac{\pi}{5}$ with the x-axis and is in the 2 nd quadrant where \cos is negative, so $\cos \frac{4 \pi}{5}=-\cos \frac{\pi}{5}$.
26. $\frac{9 \pi}{10}=\pi-\frac{\pi}{10}$ so it makes an angle of $\frac{\pi}{10}$ with the x-axis and is in the 2nd quadrant where \cos is negative, so $\cos \frac{9 \pi}{10}=-\cos \frac{\pi}{10}$.
27. $\frac{11 \pi}{10}=\pi+\frac{\pi}{10}$ so it makes an angle of $\frac{\pi}{10}$ with the x-axis and is in the 3rd quadrant where cos is negative, so $\cos \frac{11 \pi}{10}=-\cos \frac{\pi}{10}$.
28. $\frac{21 \pi}{10}=2 \pi+\frac{\pi}{10}$ so it makes an angle of $\frac{\pi}{10}$ with the x-axis and is in the 1st quadrant where cos is positive, so $\cos \frac{21 \pi}{10}=\cos \frac{\pi}{10}$.
29. $100^{\circ}=180^{\circ}-80^{\circ}$ so it makes an angle of 80° with the x-axis and is in the 2 nd quadrant where tan is negative, so $\tan 100^{\circ}=-\tan 80^{\circ}$.
30. $200^{\circ}=180^{\circ}+20^{\circ}$ so it makes an angle of 20° with the x-axis and is in the 3rd quadrant where tan is positive, so $\tan 200^{\circ}=\tan 20^{\circ}$.
31. -60° makes an angle of 60° with the x-axis and is in the 4th quadrant where tan is negative, so $\tan -60^{\circ}=-\tan 60^{\circ}$.
32. $-160^{\circ}=-180^{\circ}+20^{\circ}$ so it makes an angle of 20° with the x-axis and is in the 2 nd quadrant where \tan is positive, so $\tan -160^{\circ}=\tan 20^{\circ}$.
33. $\frac{6 \pi}{5}=\pi+\frac{\pi}{5}$ so it makes an angle of $\frac{\pi}{5}$ with the x-axis and is in the 3rd quadrant where tan is positive, so $\tan \frac{6 \pi}{5}=\tan \frac{\pi}{5}$.
34. $-\frac{6 \pi}{5}=-\pi-\frac{\pi}{5}$ so it makes an angle of $\frac{\pi}{5}$ with the x-axis and is in the 2nd quadrant where tan is negative, so $\tan -\frac{6 \pi}{5}=-\tan \frac{\pi}{5}$.
35. $\frac{11 \pi}{5}=2 \pi+\frac{\pi}{5}$ so it makes an angle of $\frac{\pi}{5}$ with the x-axis and is in the 1st quadrant where tan is positive, so $\tan \frac{11 \pi}{5}=\tan \frac{\pi}{5}$.
36. $-\frac{21 \pi}{5}=-4 \pi-\frac{\pi}{5}$ so it makes an angle of $\frac{\pi}{5}$ with the x-axis and is in the 4th quadrant where tan is negative, so $\tan -\frac{21 \pi}{5}=-\tan \frac{\pi}{5}$.
37. $300^{\circ}=360^{\circ}-60^{\circ}$ and is in the 4 th quadrant so

$$
\begin{aligned}
\sin 300^{\circ} & =-\sin 60^{\circ} \\
& =-\frac{\sqrt{3}}{2}
\end{aligned}
$$

38. $210^{\circ}=180^{\circ}+30^{\circ}$ and is in the 3 rd quadrant so

$$
\begin{aligned}
\tan 210^{\circ} & =\tan 30^{\circ} \\
& =\frac{1}{\sqrt{3}} \quad\left(\text { or } \frac{\sqrt{3}}{3}\right)
\end{aligned}
$$

39. $240^{\circ}=180^{\circ}+60^{\circ}$ and is in the 3rd quadrant so

$$
\begin{aligned}
\cos 240^{\circ} & =-\cos 60^{\circ} \\
& =-\frac{1}{2}
\end{aligned}
$$

40. $270^{\circ}=180^{\circ}+90^{\circ}$ so 270° lies on the negative y-axis and $\cos 270^{\circ}=0$.
41. 180° lies on the negative x-axis so $\sin 180^{\circ}=0$.
42. $390^{\circ}=360^{\circ}+30^{\circ}$ and is in the first quadrant so

$$
\begin{aligned}
\cos 390^{\circ} & =\cos 30^{\circ} \\
& =\frac{\sqrt{3}}{2}
\end{aligned}
$$

43. $-135^{\circ}=-180^{\circ}+45^{\circ}$ and is in the 3rd quadrant so

$$
\begin{aligned}
\sin -135^{\circ} & =-\sin 45^{\circ} \\
& =-\frac{1}{\sqrt{2}} \quad\left(\text { or }-\frac{\sqrt{2}}{2}\right)
\end{aligned}
$$

44. $-135^{\circ}=-180^{\circ}+45^{\circ}$ and is in the 3rd quadrant so

$$
\begin{aligned}
\cos -135^{\circ} & =-\cos 45^{\circ} \\
& =-\frac{1}{\sqrt{2}} \quad\left(\text { or }-\frac{\sqrt{2}}{2}\right)
\end{aligned}
$$

45. $\frac{7 \pi}{6}=\pi+\frac{\pi}{6}$ and is in the 3rd quadrant so

$$
\begin{aligned}
\sin \frac{7 \pi}{6} & =-\sin \frac{\pi}{6} \\
& =-\frac{1}{2}
\end{aligned}
$$

46. $\frac{7 \pi}{6}=\pi+\frac{\pi}{6}$ and is in the 3rd quadrant so

$$
\begin{aligned}
\cos \frac{7 \pi}{6} & =-\cos \frac{\pi}{6} \\
& =-\frac{\sqrt{3}}{2}
\end{aligned}
$$

47. $\frac{7 \pi}{6}=\pi+\frac{\pi}{6}$ and is in the 3rd quadrant so

$$
\begin{aligned}
\tan \frac{7 \pi}{6} & =\tan \frac{\pi}{6} \\
& =\frac{1}{\sqrt{3}} \quad\left(\text { or } \frac{\sqrt{3}}{3}\right)
\end{aligned}
$$

48. $\frac{7 \pi}{4}=2 \pi-\frac{\pi}{4}$ and is in the 4th quadrant so

$$
\begin{aligned}
\sin \frac{7 \pi}{4} & =-\sin \frac{\pi}{4} \\
& =-\frac{1}{\sqrt{2}} \quad\left(\text { or }-\frac{\sqrt{2}}{2}\right)
\end{aligned}
$$

49. $-\frac{7 \pi}{4}=-2 \pi+\frac{\pi}{4}$ and is in the 1 st quadrant so

$$
\begin{aligned}
\cos -\frac{7 \pi}{4} & =\cos \frac{\pi}{4} \\
& =\frac{1}{\sqrt{2}} \quad\left(\text { or } \frac{\sqrt{2}}{2}\right)
\end{aligned}
$$

50. 6π lies on the positive x-axis so $\tan 6 \pi=\tan 0=$ 0 .
51. $\frac{5 \pi}{2}=2 \pi+\frac{\pi}{2}$ so it lies on the positive y-axis and $\sin \frac{5 \pi}{2}=\sin \frac{p i}{2}=1$
52. $-\frac{7 \pi}{3}=-2 \pi-\frac{\pi}{3}$ and is in the 4th quadrant so

$$
\begin{aligned}
\cos -\frac{7 \pi}{3} & =\cos \frac{\pi}{3} \\
& =\frac{1}{2}
\end{aligned}
$$

3. There will be a solution in the 1 st and 3 rd quadrants (where tan is positive). $\tan 45^{\circ}=1$ so $x=45^{\circ}$ or $x=180+45=225^{\circ}$.
4. There will be a solution in the 3 rd and 4 th quadrants (where \sin is negative). $\sin 45^{\circ}=\frac{1}{\sqrt{2}}$ so $x=180+45=225^{\circ}$ or $x=360-45=315^{\circ}$.

5 . There will be a solution in the 1 st and 2 nd quadrants (where \sin is positive). $\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}$ so $x=\frac{\pi}{4}$ or $x=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}$.

6 . There will be a solution in the 2 nd and 3 rd quadrants (where \cos is negative). $\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}$ so $x=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}$ or $x=\pi+\frac{\pi}{4}=\frac{5 \pi}{4}$.
7. There will be a solution in the 2 nd and 4 th quadrants (where \tan is negative). $\tan \frac{\pi}{4}=1$ so $x=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}$ or $x=2 \pi-\frac{\pi}{4}=\frac{7 \pi}{4}$.
8. There will be a solution in the 1 st and 3 rd quadrants (where \tan is positive). $\tan \frac{\pi}{3}=\sqrt{3}$ so $x=\frac{\pi}{3}$ or $x=\pi+\frac{\pi}{3}=\frac{4 \pi}{3}$.
9. There will be a solution in the 1 st and 4 th quadrants (where \cos is positive). $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$ so $x=30^{\circ}$ or $x=-30^{\circ}$.
10. There will be a solution in the 3rd and 4th quadrants (where \sin is negative). $\sin 90^{\circ}=1$ so $x=-180+90=-90^{\circ}$ or $x=-90^{\circ}$ (i.e. the same single solution).
11. There will be a solution in the 2 nd and 4 th quadrants (where \tan is negative). $\tan 30^{\circ}=\frac{1}{\sqrt{3}}$ so $x=180-30=150^{\circ}$ or $x=-30^{\circ}$.
12. sin is zero for angles that fall on the x-axis, so $x=-180$ or $x=0$ or $x=180$.
13. There will be a solution in the 1 st and 2 nd quadrants (where \sin is positive). $\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$ so $x=\frac{\pi}{3}$ or $x=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$.
14. There will be a solution in the 2 nd and 3 rd quadrants (where cos is negative). $\cos \frac{\pi}{3}=\frac{1}{2}$ so $x=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$ or $x=-\pi+\frac{\pi}{3}=-\frac{2 \pi}{3}$.
15. There will be a solution in the 1 st and 2 nd quadrants (where sin is positive). $\sin \frac{\pi}{6}=\frac{1}{2}$ so $x=\frac{\pi}{6}$ or $x=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}$.
16. cos is zero for angles that fall on the y-axis, so $x=\frac{\pi}{2}$ or $x=-\frac{\pi}{2}$.
17. If $0 \leq x \leq 180^{\circ}$ then $0 \leq 2 x \leq 360^{\circ}$. $2 x$ must lie in the 1 st or 3 rd quadrant (where tan is positive). $\tan 30^{\circ}=\frac{1}{\sqrt{3}}$ so

$$
\begin{aligned}
2 x & =30 & \text { or } & 2 x
\end{aligned}=180+30=210
$$

18. If $0 \leq x \leq \pi$ then $0 \leq 4 x \leq 4 \pi$. $4 x$ must lie in the 1st or 4th quadrant (where cos is positive). $\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$ so:

$$
\begin{aligned}
& 4 x=\frac{\pi}{6} \quad \text { or } \quad 4 x=2 \pi-\frac{\pi}{6} \\
& x=\frac{\pi}{24} \\
& =\frac{11 \pi}{6} \\
& x=\frac{11 \pi}{24}
\end{aligned}
$$

$$
\text { or } \begin{array}{rlrlr}
4 x & =2 \pi+\frac{\pi}{6} & \text { or } & 4 x & =4 \pi-\frac{\pi}{6} \\
& =\frac{13 \pi}{6} & & =\frac{23 \pi}{6} \\
x & =\frac{13 \pi}{24} & x & =\frac{23 \pi}{24}
\end{array}
$$

19. If $-90^{\circ} \leq x \leq 90^{\circ}$ then $-270^{\circ} \leq 3 x \leq 270^{\circ}$. $3 x$ must lie in the 1 st or 2 nd quadrant (where sin is positive). $\sin 30^{\circ}=\frac{1}{2}$ so:
20. First rearrange the equation:

$$
\begin{aligned}
2 \sqrt{3} \sin 2 x & =3 \\
\sin 2 x & =\frac{3}{2 \sqrt{3}} \\
\sin 2 x & =\frac{\sqrt{3}}{2}
\end{aligned}
$$

If $0 \leq x \leq 2 \pi$ then $0 \leq 2 x \leq 4 \pi$. $2 x$ must lie in the 1 st or 2 nd quadrant (where sin is positive). $\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$ so:

$$
\text { or } \quad 2 x=2 \pi+\frac{\pi}{3}
$$

$$
\left.\begin{array}{rlrl}
2 x & =\frac{\pi}{3} & \text { or } & 2 x
\end{array}=\pi-\frac{\pi}{3}\right)
$$

21. First rearrange the equation:

$$
\begin{aligned}
2 \cos 3 x+\sqrt{3} & =0 \\
2 \cos 3 x & =-\sqrt{3} \\
\cos 3 x & =-\frac{\sqrt{3}}{2}
\end{aligned}
$$

If $0 \leq x \leq 2 \pi$ then $0 \leq 3 x \leq 6 \pi$. $3 x$ must lie in the 2 nd or 3 rd quadrant (where cos is negative). $\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$ so:

$$
\begin{array}{rlrlr}
3 x & =\pi-\frac{\pi}{6} & \text { or } & 3 x & =\pi+\frac{\pi}{6} \\
& =\frac{5 \pi}{6} & & =\frac{7 \pi}{6} \\
\text { or } & & x & =\frac{7 \pi}{18} \\
x & =\frac{5 \pi}{18} & & 3 x & =3 \pi+\frac{\pi}{6} \\
3 x & =3 \pi-\frac{\pi}{6} & \text { or } & & =\frac{19 \pi}{6} \\
& =\frac{17 \pi}{6} & & x & =\frac{19 \pi}{18}
\end{array}
$$

$$
\begin{aligned}
& 3 x=-180-30 \text { or } 3 x=30^{\circ} \text { or } 3 x=180-30 \\
& =-210^{\circ} \quad x=10^{\circ} \quad=150^{\circ} \\
& x=-70^{\circ} \quad x=50^{\circ}
\end{aligned}
$$

or $\quad 3 x=5 \pi-\frac{\pi}{6} \quad$ or $\quad 3 x=5 \pi+\frac{\pi}{6}$

$$
=\frac{29 \pi}{6}
$$

$$
=\frac{31 \pi}{6}
$$

$$
x=\frac{29 \pi}{18}
$$

$$
x=\frac{31 \pi}{18}
$$

22. Using the null factor law:

$$
\begin{aligned}
& \sin x+1=0 \quad \text { or } \\
& \sin x=-1 \\
& x=\frac{3 \pi}{2} \\
& \text { or } \\
& 2 \sin x-1=0 \\
& 2 \sin x=1 \\
& \sin x=\frac{1}{2} \\
& x=\frac{\pi}{6} \\
& \text { or } \quad x=\pi-\frac{\pi}{6} \\
& =\frac{5 \pi}{6}
\end{aligned}
$$

23. $\sin ^{2} x=\frac{1}{2}$

$$
\sin x= \pm \frac{1}{\sqrt{2}}
$$

This gives solutions in all 4 quadrants. $\sin 45^{\circ}=$ $\frac{1}{\sqrt{2}}$ so:

$$
\begin{array}{ll}
& x=45^{\circ} \\
\text { or } & x=180-45=135^{\circ} \\
\text { or } & x=180+45=225^{\circ} \\
\text { or } & x=360-45=315^{\circ}
\end{array}
$$

24. $4 \cos ^{2} x-3=0$

$$
\begin{aligned}
4 \cos ^{2} x & =3 \\
\cos ^{2} x & =\frac{3}{4} \\
\cos x & = \pm \frac{\sqrt{3}}{2}
\end{aligned}
$$

This gives solutions in all 4 quadrants. $\cos \frac{\pi}{6}=$ $\frac{\sqrt{3}}{2}$ so:

$$
\begin{array}{rlrl}
& x & =-\pi+\frac{\pi}{6}=-\frac{5 \pi}{6} \\
& \text { or } & x & =-\frac{\pi}{6} \\
\text { or } & x & =\frac{\pi}{6} \\
\text { or } & x & =\pi-\frac{\pi}{6}=\frac{5 \pi}{6}
\end{array}
$$

25. $\sin x=0$

$$
x=0
$$

or $x=180^{\circ}$
or $x=-180^{\circ}$
or

$$
\begin{aligned}
2 \cos x-1 & =0 \\
2 \cos x & =1 \\
\cos x & =\frac{1}{2} \\
x & =60^{\circ}
\end{aligned}
$$

$$
\text { or } x=-60^{\circ}
$$

26. $\tan x=1.5$ has solutions in the 1 st and 3rd quadrant where \tan is positive. $x=0.98$ is in the 1 st quadrant so there must be another solution at $x=\pi+0.98=3.14+0.98=4.12$.
27. (a) $(2 p-1)(p+1)=2 p^{2}+2 p-p-1$

$$
=2 p^{2}+p-1
$$

(b) By substituting $p=\cos x$ and comparing with the previous answer we see we can factorise this:

$$
\begin{aligned}
2 \cos ^{2} x+\cos x-1 & =0 \\
(2 \cos x-1)(\cos x+1) & =0
\end{aligned}
$$

Now using the null factor law:

$$
\begin{aligned}
2 \cos x-1 & =0 & \text { or } & \cos x+1
\end{aligned}=0
$$

28. If $0 \leq x \leq 2 \pi$ then $0+\frac{\pi}{3} \leq x+\frac{\pi}{3} \leq 2 \pi+\frac{\pi}{3}$ i.e. $\frac{\pi}{3} \leq x+\frac{\pi}{3} \leq \frac{7 \pi}{3}$
$x+\frac{\pi}{3}$ must be in the 1 st or 2 nd quadrant (where \sin is positive), and $\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}$ so:

$$
\begin{aligned}
& x+\frac{\pi}{3}=\pi-\frac{\pi}{4} \\
& \text { or } \quad x+\frac{\pi}{3}=2 \pi+\frac{\pi}{4} \\
& =\frac{3 \pi}{4} \\
& =\frac{9 \pi}{4} \\
& x=\frac{3 \pi}{4}-\frac{\pi}{3} \\
& x=\frac{9 \pi}{4}-\frac{\pi}{3} \\
& =\frac{9 \pi}{12}-\frac{4 \pi}{12} \\
& =\frac{27 \pi}{12}-\frac{4 \pi}{12} \\
& =\frac{5 \pi}{12} \\
& =\frac{23 \pi}{12}
\end{aligned}
$$

(Note: we can't use $x+\frac{\pi}{3}=\frac{\pi}{4}$ because it is outside the specified interval of possible values for x.

Miscellaneous Exercise 2

1. $\overrightarrow{\mathrm{AP}}=\frac{5}{7} \overrightarrow{\mathrm{AB}}$

$$
\begin{aligned}
\overrightarrow{\mathrm{OP}} & =\overrightarrow{\mathrm{OA}}+\frac{5}{7}(\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}) \\
& =\frac{2}{7} \overrightarrow{\mathrm{OA}}+\frac{5}{7} \overrightarrow{\mathrm{OB}} \\
& =\frac{2}{7}(19 \mathbf{i}+18 \mathbf{j})+\frac{5}{7}(26 \mathbf{i}-17 \mathbf{j}) \\
& =\frac{38}{7} \mathbf{i}+\frac{36}{7} \mathbf{j}+\frac{130}{7} \mathbf{i}-\frac{85}{7} \mathbf{j} \\
& =\frac{38+130}{7} \mathbf{i}+\frac{36-85}{7} \mathbf{j} \\
& =24 \mathbf{i}-7 \mathbf{j} \\
|\overrightarrow{\mathrm{OP}}| & =\sqrt{24^{2}+7^{2}} \\
& =25 \text { units }
\end{aligned}
$$

2. (a) $8^{3} \times 8^{4}=8^{3+4}=8^{7}$
(b) $\sqrt{8}=8^{\frac{1}{2}}$
(c) $64=8^{2}$
(d) $2=\sqrt[3]{8}=8^{\frac{1}{3}}$
(e) $4=2^{2}=\left(8^{\frac{1}{3}}\right)^{2}=8^{\frac{2}{3}}$
(f) $0.125=\frac{1}{8}=8^{-1}$
3. Substitute $-3+7$ i for z :

$$
\begin{aligned}
\text { L.H.S.: } \quad z^{2} & =(-3+7 \mathrm{i})^{2} \\
& =9-42 \mathrm{i}+49 \mathrm{i}^{2} \\
& =9-49-42 \mathrm{i} \\
& =-40-42 \mathrm{i} \\
& =\text { R.H.S. }
\end{aligned}
$$

It should be clear that if $z=-3+7 \mathrm{i}$ is a solution then $z=-(-3+7 \mathrm{i})=3-7 \mathrm{i}$ is also a solution.
How would we go about finding these solutions without first being told one of them? Let the solution be $z=a+b \mathrm{i}$, with a and b real, then:

$$
\begin{aligned}
(a+b \mathrm{i})^{2} & =-40-42 \mathrm{i} \\
a^{2}+2 a b \mathrm{i}+b^{2} \mathrm{i}^{2} & =-40-42 \mathrm{i} \\
a^{2}-b^{2}+2 a b \mathrm{i} & =-40-42 \mathrm{i} \\
2 a b & =-42 \\
a b & =-21 \\
b & =-\frac{21}{a} \\
a^{2}-b^{2} & =-40 \\
a^{2}-\left(-\frac{21}{a}\right)^{2} & =-40 \\
a^{2}-\frac{441}{a^{2}} & =-40 \\
a^{4}-441 & =-40 a^{2} \\
a^{4}+40 a^{2}-441 & =0 \\
\left(a^{2}+49\right)\left(a^{2}-9\right) & =0
\end{aligned}
$$

$$
\begin{aligned}
a^{2} & =9 \\
a & = \pm 3 \\
b & =-\frac{21}{a} \\
& =\mp 7
\end{aligned}
$$

(We would not need to consider $a^{2}+49=0$ because this has no real solution and we stipulated a was real.)
4. (a) $8=2^{3}$ so $\log _{2} 8=3$
(b) $25=5^{2}$ so $\log _{5} 25=2$
(c) $0.2=\frac{1}{5}=5^{-1}$ so $\log _{5} 0.2=-1$
(d) $\sqrt{2}=2^{\frac{1}{2}}$ so $\log _{2} \sqrt{2}=\frac{1}{2}$
(e) $1000=10^{3}$ so $\log 1000=3$
(f) $a^{3} \times a^{7}=a^{10}$ so $\log _{a}\left(a^{3} \times a^{7}\right)=10$
5. Rearrange the equation first:

$$
\begin{aligned}
\sqrt{2} \sin 5 x & =1 \\
\sin 5 x & -\frac{1}{\sqrt{2}}
\end{aligned}
$$

If $0 \leq x \leq \pi$ then $0 \leq 5 x \leq 5 \pi$. $5 x$ must be in the 1 st or 2 nd quadrant (where sin is positive), and $\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}$ so:
or $\quad 5 x=2 \pi+\frac{\pi}{4} \quad$ or $\quad 5 x=3 \pi-\frac{\pi}{4}$

$$
=\frac{9 \pi}{4}
$$

$$
=\frac{11 \pi}{4}
$$

$$
x=\frac{9 \pi}{20}
$$

$$
x=\frac{11 \pi}{20}
$$

or $\quad 5 x=4 \pi+\frac{\pi}{4}$
or $\quad 5 x=5 \pi-\frac{\pi}{4}$

$$
=\frac{17 \pi}{4}
$$

$$
=\frac{19 \pi}{4}
$$

$$
x=\frac{17 \pi}{20}
$$

$$
x=\frac{19 \pi}{20}
$$

6. (a) $\bar{z}=-5 \sqrt{2} \mathrm{i}$
(b) $z^{2}=(5 \sqrt{2} \mathrm{i})^{2}=25 \times 2 \times \mathrm{i}^{2}=-50$
(c) $(1+z)^{2}=1+2 z+z^{2}=1+10 \sqrt{2} \mathrm{i}-50=$ $-49+10 \sqrt{2} i$
7. (a) $z+w=4+7 \mathrm{i}+2-\mathrm{i}$

$$
=6+6 \mathrm{i}
$$

(b) $z w=(4+7 \mathrm{i})(2-\mathrm{i})$

$$
\begin{aligned}
& =8-4 \mathrm{i}+14 \mathrm{i}-7 \mathrm{i}^{2} \\
& =8+7+10 \mathrm{i} \\
& =15+10 \mathrm{i}
\end{aligned}
$$

(c) $\bar{z}=4-7 \mathrm{i}$

$$
\begin{aligned}
& 5 x=\frac{\pi}{4} \\
& \text { or } \\
& 5 x=\pi-\frac{\pi}{4} \\
& x=\frac{\pi}{20} \\
& =\frac{3 \pi}{4} \\
& x=\frac{3 \pi}{20}
\end{aligned}
$$

(d) $\bar{z} \bar{w}=(4-7 \mathrm{i})(2+\mathrm{i})$

$$
\begin{aligned}
& =8+4 \mathrm{i}-14 \mathrm{i}-7 \mathrm{i}^{2} \\
& =8+7-10 \mathrm{i} \\
& =15-10 \mathrm{i}
\end{aligned}
$$

(e) $z^{2}=(4+7 \mathrm{i})^{2}$

$$
\begin{aligned}
& =16+56 \mathrm{i}+49 \mathrm{i}^{2} \\
& =16+56 \mathrm{i}-49 \\
& =-33+56 \mathrm{i}
\end{aligned}
$$

(f) $(z w)^{2}=(15+10 \mathrm{i})^{2}$

$$
\begin{aligned}
& =225+300 \mathrm{i}+100 \mathrm{i}^{2} \\
& =225+300 \mathrm{i}-100 \\
& =125+300 \mathrm{i}
\end{aligned}
$$

(g) $p=\operatorname{Re}(\bar{z})+\operatorname{Im}(\bar{w}) \mathrm{i}$

$$
\begin{aligned}
p & =\operatorname{Re}(z)-\operatorname{Im}(w) \mathrm{i} \\
& =4+\mathrm{i}
\end{aligned}
$$

8. (a) $(2,3)$
(b) $(-5,6)$
(c) $(0,7)$
(d) $(3,0)$
(e) $(3,8)+(-2,1)=(1,9)$
(f) $(3,-5)+(3,5)=(6,0)$
(g) $(5,3)-(2,0)=(3,3)$
(h) $(2,7)-(2,-7)=(0,14)$
(i) $(0,2) \times(3,5)=(0 \times 3-2 \times 5,0 \times 5+2 \times 3)=$ $(-10,6)$
(j) $(-3,1) \times(-3,-1)=\left((-3)^{2}+(1)^{2}, 0\right)=$ $(10,0)$
(k) $(3,0) \div(2,-4)=\frac{3}{2-4 \mathrm{i}} \times \frac{2+4 \mathrm{i}}{2+4 \mathrm{i}}$

$$
\begin{aligned}
& =\frac{6+12 \mathrm{i}}{2^{2}+4^{2}} \\
& =\frac{6+12 \mathrm{i}}{20} \\
& =0.3+0.6 \mathrm{i} \\
& =(0.3,0.6)
\end{aligned}
$$

(l) $(3,-8) \div(3,8)=\frac{3-8 \mathrm{i}}{3+8 \mathrm{i}} \times \frac{3-8 \mathrm{i}}{3-8 \mathrm{i}}$

$$
\begin{aligned}
& =\frac{3^{3}-48 \mathrm{i}+8^{2} \mathrm{i}^{2}}{3^{3}+8^{2}} \\
& =\frac{9-48 \mathrm{i}-64}{9+64} \\
& =\frac{-55-48 \mathrm{i}}{73} \\
& =\left(-\frac{55}{73},-\frac{48}{73}\right)
\end{aligned}
$$

9. If one solution is $x=2+3 \mathrm{i}$ then

$$
\begin{aligned}
(2+3 \mathrm{i})^{2}+b(2+3 \mathrm{i})+c & =0 \\
(4+12 \mathrm{i}-9)+b(2+3 \mathrm{i})+c & =0 \\
-5+12 \mathrm{i}+2 b+3 b \mathrm{i}+c & =0 \\
(-5+2 b+c)+(12+3 b) \mathrm{i} & =0 \\
12+3 b & =0 \\
b & =-4 \\
-5+2 b+c & =0 \\
-5-8+c & =0 \\
c & =13 \\
x^{2}-4 x+13 & =0
\end{aligned}
$$

10. First factor the equation:

$$
\begin{aligned}
2 \cos ^{2} x-\cos x-1 & =0 \\
(\cos x-1)(2 \cos x+1) & =0
\end{aligned}
$$

Now use the null factor law:

$$
\begin{array}{rlrl}
\cos x-1=0 & \text { or } & 2 \cos x+1 & =0 \\
\cos x=1 & 2 \cos x & =-1 \\
x=0 & \cos x & =-\frac{1}{2} \\
x & =\pi-\frac{\pi}{3} \\
& =\frac{2 \pi}{3} \\
\text { or } \quad x & =-\pi+\frac{\pi}{3} \\
& =-\frac{2 \pi}{3}
\end{array}
$$

11. $3 \sin x^{\circ}+1=0$

$$
\begin{aligned}
3 \sin x^{\circ} & =-1 \\
\sin x^{\circ} & =-\frac{1}{3}
\end{aligned}
$$

Solutions are in the 3rd and 4th quadrant where \sin is negative. $\sin 19.5^{\circ}=\frac{1}{3}$

$$
\begin{aligned}
x & =180+19.5 \\
& =199.5^{\circ} \\
\text { or } \quad x & =360-19.5 \\
& =340.5^{\circ} \\
\text { or } \quad x & =540+19.5 \\
& =559.5^{\circ} \\
\text { or } \quad x & =720-19.5 \\
& =700.5^{\circ}
\end{aligned}
$$

12. The period is π.

$$
\begin{aligned}
\frac{2 \pi}{a} & =\pi \\
2 \pi & =a \pi \\
a & =2
\end{aligned}
$$

The solid line is phase shifted to the left $\frac{\pi}{3}$ so $b=\frac{\pi}{3}$.

