Chapter 2

Exercise 2A

There is no need for worked solutions for any of the questions in this exercise. Refer to the answers in Sadler.

Exercise 2B

- 1. (a) Amplitude of sin(x) is 1.
 - (b) Amplitude of $\cos(x)$ is 1, so amplitude of $2\cos(x)$ is 2.
 - (c) Amplitude of $\cos(x)$ is 1, so amplitude of $4\cos(x)$ is 4.
 - (d) Amplitude of $\sin(x)$ is 1, so amplitude of $-3\sin(2x)$ is 3. (Remember, amplitude can't be negative. The 2 here affects the period, not the amplitude.)
 - (e) Amplitude of $\cos(x)$ is 1, so amplitude of $2\cos(x + \frac{\pi}{2})$ is 2. (The $+\frac{\pi}{2}$ here affects the phase position, not the amplitude.)
 - (f) Amplitude of sin(x) is 1, so amplitude of -3 sin(x - π) is 3. (Remember, amplitude can't be negative. The -π here affects the phase position, not the amplitude.)
 - (g) Amplitude of $\cos(x)$ is 1, so amplitude of $5\cos(x-2)$ is 5. (The -2 here affects the phase position, not the amplitude.)
 - (h) Amplitude of $\cos(x)$ is 1, so amplitude of $-3\cos(2x + \pi)$ is 3. (Amplitude can't be negative; the 2 affects period, not amplitude and the $+\pi$ affects the phase position, not the amplitude.)
- 2. (a) Period of $\sin x$ is 360° .
 - (b) Period of $\tan x$ is 180° .
 - (c) Period of sin x is 360° so the period of 2 sin x is also 360°. (The 2 affects amplitude, not period.)
 - (d) Period of $\sin x$ is 360° so the period of $\sin 2x$ is $\frac{360}{2} = 180^{\circ}$.
 - (e) Period of $\cos x$ is 360° so the period of $\cos \frac{x}{2}$ is $\frac{360}{\frac{1}{2}} = 720^{\circ}$.
 - (f) Period of $\cos x$ is 360° so the period of $\cos 3x$ is $\frac{360}{3} = 120^{\circ}$.
 - (g) Period of $\tan x$ is 180° so the period of $3 \tan 2x$ is $\frac{180}{2} = 90^{\circ}$. (The 3 does not affect the period.)
 - (h) Period of $\sin x$ is 360° so the period of $3\sin \frac{x-60^{\circ}}{3}$ is $\frac{360}{\frac{1}{3}} = 1080^{\circ}$. (The first 3 affects amplitude, not period. The -60° affects phase position, not period.

- 3. (a) Period of $\cos x$ is 2π .
 - (b) Period of $\tan x$ is π .
 - (c) Period of $\cos x$ is 2π so the period of $3\cos x$ is 2π . (The 3 affects amplitude, not period.)
 - (d) Period of $\cos x$ is 2π so the period of $2\cos 4x$ is $\frac{2\pi}{4} = \frac{\pi}{2}$. (The 2 affects amplitude, not period.)
 - (e) The period of $\tan x$ is π so the period of $2\tan 3x$ is $\frac{\pi}{3}$. (The 2 does not affect period.)
 - (f) The period of $\sin x$ is 2π so the period of $\frac{1}{2}\sin 3x$ is $\frac{2\pi}{3}$. (The $\frac{1}{2}$ affects amplitude, not period.)
 - (g) The period of $\sin x$ is 2π so the period of $3\sin\frac{x}{2}$ is $\frac{2\pi}{\frac{1}{2}} = 4\pi$. (The 3 affects amplitude, not period.)
 - (h) The period of $2\cos 4x$ is $\frac{2\pi}{4} = \frac{\pi}{2}$. (The 2 affects amplitude, not period.)
 - (i) Period of $\cos x$ is 2π so the period of $2\cos(2x-\pi)$ is $\frac{2\pi}{2} = \pi$. (The first 2 affects amplitude, not period; the $-\pi$ affects phase position, not period.
 - (j) The period of $\sin x$ is 2π so the period of $2\sin 4\pi x$ is $\frac{2\pi}{4\pi} = \frac{1}{2}$. (The 2 affects amplitude, not period.)
- 4. (a) The maximum of sin x is 1 and occurs when $x = \frac{\pi}{2}$: coordinates $(\frac{\pi}{2}, 1)$ The minimum of sin x is -1 and occurs when $x = \frac{3\pi}{2}$: coordinates $(\frac{3\pi}{2}, -1)$
 - (b) The "2+" increases both maximum and minimum by 2 and has no effect on when they occur. Maximum at $(\frac{3\pi}{2}, 3)$; minimum at $(\frac{3\pi}{2}, 1)$.
 - (c) The "-" has the effect of reflecting the graph of $\sin(x)$ in the *x*-axis, so the maximum becomes the minimum and vice versa. Maximum at $\left(\frac{3\pi}{2}, 1\right)$; minimum at $\left(\frac{\pi}{2}, -1\right)$.

- (d) The "2" decreases the period from 2π to π . The *x*-position of maximum and minimum is similarly halved to $\frac{\pi}{4}$ and $\frac{3\pi}{4}$ respectively. In addition, the decreased period means that we will get two full cycles in the domain $0 \le x \le 2\pi$ so there will be two maxima and two minima, each separated by π . The "+3" means the maxima will have *y*-values of 1+3=4 and minima of -1+3=2. Thus, maxima at $(\frac{\pi}{4},4)$ and $(\frac{5\pi}{4},4)$ and minima at $(\frac{3\pi}{4},2)$ and $(\frac{7\pi}{4},2)$.
- (e) The " $-\frac{\pi}{4}$ " moves the graph of sin x to the right $\frac{\pi}{4}$ units so the x-coordinate of maximum and minimum increase to $\frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}$ and $\frac{3\pi}{2} + \frac{\pi}{4} = \frac{7\pi}{4}$. The +3 increases maximum and minimum to 4 and 2. Thus, maximum $(\frac{3\pi}{4}, 4)$, minimum $(\frac{7\pi}{4}, 2)$.
- 5. (a) The maximum value of $\sin x$ is 1 so the maximum value of $3 \sin x$ is $3 \times 1 = 3$. The smallest positive value of x that gives this maximum is 90°.
 - (b) The maximum value is 2 when $x = 90+30 = 120^{\circ}$.
 - (c) The maximum value is 2 when $x = 90-30 = 60^{\circ}$.
 - (d) The maximum value is 3 when $x = 270^{\circ}$.
- 6. (a) The maximum value is 3 when $x = \frac{\pi}{2} \div 2 = \frac{\pi}{4}$.
 - (b) The maximum value is 5 when $x = \frac{3\pi}{2}$.
 - (c) The maximum value is 2. The maximum of $\cos x$ occurs when x = 0 so here the maximum occurs when $x = 0 \frac{\pi}{6} = -\frac{\pi}{6}$, but this is not positive so we must add the period to get $x = -\frac{\pi}{6} + 2\pi = \frac{11\pi}{6}$
 - (d) The maximum value is 3 when $x = 0 + \frac{\pi}{6} = \frac{\pi}{6}$
- 7. (a) Amplitude is 2, curve is not reflected, so a = 2.
 - (b) Amplitude is 3, curve is not reflected, so a = 3.
 - (c) Amplitude is 3, curve is reflected, so a = -3.
 - (d) Amplitude is about 1.4, curve is reflected, so a = -1.4.
- 8. (a) Amplitude is 3, curve is not reflected, so a = 3.
 - (b) Amplitude is 2, curve is reflected, so a = -2.

- 9. (a) At $x = \frac{\pi}{4}$ the *y*-value is 2, so a = 2.
 - (b) At $x = 45^{\circ}$ the y-value is -1, so a = -1.
- 10. (a) Amplitude is 2, so a = 2. Period is $\frac{2\pi}{3}$ which is one third the period of $\sin x$ so b = 3.
 - (b) Amplitude is 3 and curve is reflected, so a = -3. Period is π which is half the period of sin x so b = 2.
 - (c) Amplitude is 2, so a = 2. Period is 60° which is one sixth the period of $\sin x$ so b = 6.
 - (d) Amplitude is 3, so a = 3. Period is 90° which is one quarter the period of $\sin x$ so b = 4.
- 11. (a) Amplitude is 1 so a = 1. Period is π which is half the period of $\cos x$ so b = 2.
 - (b) Amplitude is 3 and the curve is reflected, so a = -3. Period is $\frac{2\pi}{3}$ which is one third the period of $\cos x$ so b = 3.
 - (c) Amplitude is 3 and the curve is reflected, so a = -3. Period is 180° which is half the period of $\cos x$ so b = 2.
 - (d) Amplitude is 2 so a = 2. Period is 90° which is quarter the period of $\cos x$ so b = 4.
- 12. (a) Amplitude is 2, so a = 2. The broken line is $y = 2 \sin x$. The unbroken line is shifted to the right by 30° so its equation is $y = 2 \sin(x-30^{\circ})$ and the smallest positive value of b is b = 30. The second smallest value of bis obtained if we consider the unbroken line as having been moved to the right by one full cycle plus $30^{\circ}=360 + 30 = 390$.
 - (b) The amplitude of 2 means c = -2. The solid line is the reflected sine curve shifted right by 210° so d = 210.
- 13. (a) Amplitude is 3, period is $\frac{2\pi}{\pi} = 2$.
 - (b) See answers in Sadler.
- 14. (a) Amplitude is 5, period is $\frac{2\pi}{\pi/2} = 4$.
 - (b) See answers in Sadler.
- 15. See answers in Sadler. Curves are the same as $y = \tan x$ with a vertical dilation factor of 2. The second curve is the same shape as the first, but phase-shifted 45° to the left.
- 16. See answers in Sadler. Amplitude of curves is 3 and period is π . The second curve is the same shape as the first, but phase-shifted $\frac{\pi}{3}$ to the right.

Exercise 2C

- 1. 190° is in the 3rd quadrant where tan is **positive**.
- 2. 310° is in the 4th quadrant where cos is **positive**.
- 3. -190° is in the 2nd quadrant where tan is **negative**.
- 4. -170° is in the 3rd quadrant where sin is **negative**.
- 5. $555^{\circ} = 360^{\circ} + 195^{\circ}$ so it is in the 3rd quadrant where sin is **negative**.
- 6. 190° is in the 3rd quadrant where cos is **negative**.
- 7. $\frac{\pi}{10}$ is in the 1st quadrant where tan is **positive**.
- 8. $\frac{4\pi}{5}$ is in the 2nd quadrant where sin is **positive**.
- 9. $\frac{\pi}{10}$ is in the 1st quadrant where cos is **positive**.
- 10. $-\frac{\pi}{5}$ is in the 4th quadrant where sin is **negative**.
- 11. $\frac{9\pi}{10}$ is in the 2nd quadrant where cos is **negative**.
- 12. $\frac{13\pi}{5} = 2\pi + \frac{3\pi}{5}$ so it is in the 2nd quadrant where tan is **negative**.
- 13. $140^{\circ} = 180^{\circ} 40^{\circ}$ so it makes an angle of 40° with the *x*-axis and is in the 2nd quadrant where sin is positive, so $\sin 140^{\circ} = \sin 40^{\circ}$.
- 14. $250^{\circ} = 180^{\circ} + 70^{\circ}$ so it makes an angle of 70° with the *x*-axis and is in the 3rd quadrant where sin is negative, so $\sin 250^{\circ} = -\sin 70^{\circ}$.
- 15. $340^{\circ} = 360^{\circ} 20^{\circ}$ so it makes an angle of 20° with the *x*-axis and is in the 4th quadrant where sin is negative, so $\sin 340^{\circ} = -\sin 20^{\circ}$.
- 16. $460^{\circ} = 360^{\circ} + 100^{\circ} = 360^{\circ} + 180^{\circ} 80^{\circ}$ so it makes an angle of 80° with the *x*-axis and is in the 2nd quadrant where sin is positive, so $\sin 460^{\circ} = \sin 80^{\circ}$.
- 17. $\frac{5\pi}{6} = \pi \frac{\pi}{6}$ so it makes an angle of $\frac{\pi}{6}$ with the x-axis and is in the 2nd quadrant where sin is positive, so $\sin \frac{5\pi}{6} = \sin \frac{\pi}{6}$.
- 18. $\frac{7\pi}{6} = \pi + \frac{\pi}{6}$ so it makes an angle of $\frac{\pi}{6}$ with the x-axis and is in the 3rd quadrant where sin is negative, so $\sin \frac{7\pi}{6} = -\sin \frac{\pi}{6}$.
- 19. $\frac{11\pi}{5} = 2\pi + \frac{\pi}{5}$ so it makes an angle of $\frac{\pi}{5}$ with the x-axis and is in the 1st quadrant where sin is positive, so $\sin \frac{11\pi}{5} = \sin \frac{\pi}{5}$.
- 20. $-\frac{\pi}{5}$ makes an angle of $\frac{\pi}{5}$ with the *x*-axis and is in the 4th quadrant where sin is negative, so $\sin -\frac{\pi}{5} = -\sin \frac{\pi}{5}$.
- 21. $100^{\circ} = 180^{\circ} 80^{\circ}$ so it makes an angle of 80° with the *x*-axis and is in the 2nd quadrant where cos is negative, so $\cos 100^{\circ} = -\cos 80^{\circ}$.

- 22. $200^{\circ} = 180^{\circ} + 20^{\circ}$ so it makes an angle of 20° with the *x*-axis and is in the 3rd quadrant where cos is negative, so $\cos 200^{\circ} = -\cos 20^{\circ}$.
- 23. $300^{\circ} = 360^{\circ} 60^{\circ}$ so it makes an angle of 60° with the *x*-axis and is in the 4th quadrant where cos is positive, so $\cos 300^{\circ} = \cos 60^{\circ}$.
- 24. $-300^{\circ} = -360^{\circ} + 60^{\circ}$ so it makes an angle of 60° with the *x*-axis and is in the 1st quadrant where cos is positive, so $\cos -300^{\circ} = \cos 60^{\circ}$.
- 25. $\frac{4\pi}{5} = \pi \frac{\pi}{5}$ so it makes an angle of $\frac{\pi}{5}$ with the x-axis and is in the 2nd quadrant where \cos is negative, so $\cos \frac{4\pi}{5} = -\cos \frac{\pi}{5}$.
- 26. $\frac{9\pi}{10} = \pi \frac{\pi}{10}$ so it makes an angle of $\frac{\pi}{10}$ with the x-axis and is in the 2nd quadrant where cos is negative, so $\cos \frac{9\pi}{10} = -\cos \frac{\pi}{10}$.
- 27. $\frac{11\pi}{10} = \pi + \frac{\pi}{10}$ so it makes an angle of $\frac{\pi}{10}$ with the x-axis and is in the 3rd quadrant where \cos is negative, so $\cos \frac{11\pi}{10} = -\cos \frac{\pi}{10}$.
- 28. $\frac{21\pi}{10} = 2\pi + \frac{\pi}{10}$ so it makes an angle of $\frac{\pi}{10}$ with the *x*-axis and is in the 1st quadrant where cos is positive, so $\cos \frac{21\pi}{10} = \cos \frac{\pi}{10}$.
- 29. $100^{\circ} = 180^{\circ} 80^{\circ}$ so it makes an angle of 80° with the *x*-axis and is in the 2nd quadrant where tan is negative, so $\tan 100^{\circ} = -\tan 80^{\circ}$.
- 30. $200^{\circ} = 180^{\circ} + 20^{\circ}$ so it makes an angle of 20° with the *x*-axis and is in the 3rd quadrant where tan is positive, so $\tan 200^{\circ} = \tan 20^{\circ}$.
- 31. -60° makes an angle of 60° with the *x*-axis and is in the 4th quadrant where tan is negative, so $\tan -60^{\circ} = -\tan 60^{\circ}$.
- 32. $-160^{\circ} = -180^{\circ} + 20^{\circ}$ so it makes an angle of 20° with the *x*-axis and is in the 2nd quadrant where tan is positive, so $\tan -160^{\circ} = \tan 20^{\circ}$.
- 33. $\frac{6\pi}{5} = \pi + \frac{\pi}{5}$ so it makes an angle of $\frac{\pi}{5}$ with the x-axis and is in the 3rd quadrant where tan is positive, so $\tan \frac{6\pi}{5} = \tan \frac{\pi}{5}$.
- 34. $-\frac{6\pi}{5} = -\pi \frac{\pi}{5}$ so it makes an angle of $\frac{\pi}{5}$ with the *x*-axis and is in the 2nd quadrant where tan is negative, so $\tan -\frac{6\pi}{5} = -\tan \frac{\pi}{5}$.
- 35. $\frac{11\pi}{5} = 2\pi + \frac{\pi}{5}$ so it makes an angle of $\frac{\pi}{5}$ with the x-axis and is in the 1st quadrant where tan is positive, so $\tan \frac{11\pi}{5} = \tan \frac{\pi}{5}$.
- 36. $-\frac{21\pi}{5} = -4\pi \frac{\pi}{5}$ so it makes an angle of $\frac{\pi}{5}$ with the *x*-axis and is in the 4th quadrant where tan is negative, so $\tan -\frac{21\pi}{5} = -\tan \frac{\pi}{5}$.
- 37. $300^{\circ} = 360^{\circ} 60^{\circ}$ and is in the 4th quadrant so

$$\sin 300^\circ = -\sin 60^\circ$$
$$= -\frac{\sqrt{3}}{2}$$

38. $210^{\circ} = 180^{\circ} + 30^{\circ}$ and is in the 3rd quadrant so

 \tan

$$210^{\circ} = \tan 30^{\circ}$$
$$= \frac{1}{\sqrt{3}} \qquad \left(\text{or } \frac{\sqrt{3}}{3} \right)$$

39. $240^{\circ} = 180^{\circ} + 60^{\circ}$ and is in the 3rd quadrant so

 $\cos 240^\circ = -\cos 60^\circ$ $= -\frac{1}{2}$

- 40. $270^{\circ} = 180^{\circ} + 90^{\circ}$ so 270° lies on the negative y-axis and $\cos 270^{\circ} = 0$.
- 41. 180° lies on the negative x-axis so $\sin 180^\circ = 0$.
- 42. $390^{\circ} = 360^{\circ} + 30^{\circ}$ and is in the first quadrant so

$$\cos 390^\circ = \cos 30^\circ$$
$$= \frac{\sqrt{3}}{2}$$

43. $-135^{\circ} = -180^{\circ} + 45^{\circ}$ and is in the 3rd quadrant so

$$\sin -135^\circ = -\sin 45^\circ$$
$$= -\frac{1}{\sqrt{2}} \qquad \left(\text{or } -\frac{\sqrt{2}}{2} \right)$$

44. $-135^{\circ} = -180^{\circ} + 45^{\circ}$ and is in the 3rd quadrant so

$$\cos -135^{\circ} = -\cos 45^{\circ}$$
$$= -\frac{1}{\sqrt{2}} \qquad \left(\text{or } -\frac{\sqrt{2}}{2} \right)$$

45. $\frac{7\pi}{6} = \pi + \frac{\pi}{6}$ and is in the 3rd quadrant so

$$\sin\frac{7\pi}{6} = -\sin\frac{\pi}{6}$$
$$= -\frac{1}{2}$$

46. $\frac{7\pi}{6} = \pi + \frac{\pi}{6}$ and is in the 3rd quadrant so

$$\cos\frac{7\pi}{6} = -\cos\frac{\pi}{6}$$
$$= -\frac{\sqrt{3}}{2}$$

47. $\frac{7\pi}{6} = \pi + \frac{\pi}{6}$ and is in the 3rd quadrant so

$$\tan \frac{7\pi}{6} = \tan \frac{\pi}{6}$$
$$= \frac{1}{\sqrt{3}} \qquad \left(\text{or } \frac{\sqrt{3}}{3} \right)$$

48. $\frac{7\pi}{4} = 2\pi - \frac{\pi}{4}$ and is in the 4th quadrant so

$$\sin \frac{7\pi}{4} = -\sin \frac{\pi}{4}$$
$$= -\frac{1}{\sqrt{2}} \qquad \left(\text{or } -\frac{\sqrt{2}}{2} \right)$$

49. $-\frac{7\pi}{4} = -2\pi + \frac{\pi}{4}$ and is in the 1st quadrant so

cc

$$\operatorname{os} -\frac{7\pi}{4} = \cos\frac{\pi}{4}$$
$$= \frac{1}{\sqrt{2}} \qquad \left(\operatorname{or} \frac{\sqrt{2}}{2}\right)$$

- 50. 6π lies on the positive x-axis so $\tan 6\pi = \tan 0 = 0$.
- 51. $\frac{5\pi}{2} = 2\pi + \frac{\pi}{2}$ so it lies on the positive y-axis and $\sin \frac{5\pi}{2} = \sin \frac{pi}{2} = 1$
- 52. $-\frac{7\pi}{3} = -2\pi \frac{\pi}{3}$ and is in the 4th quadrant so

$$\cos -\frac{7\pi}{3} = \cos \frac{\pi}{3}$$
$$= \frac{1}{2}$$

Exercise 2D

- 1. There will be a solution in the 1st and 4th quadrants (where cos is positive). $\cos 60^{\circ} = \frac{1}{2}$ so $x = 60^{\circ}$ or $x = 360 60 = 300^{\circ}$.
- 2. There will be a solution in the 3rd and 4th quadrants (where sin is negative). $\sin 30^{\circ} = \frac{1}{2}$ so $x = 180 + 30 = 210^{\circ}$ or $x = 360 30 = 330^{\circ}$.
- 3. There will be a solution in the 1st and 3rd quadrants (where tan is positive). $\tan 45^\circ = 1$ so $x = 45^\circ$ or $x = 180 + 45 = 225^\circ$.
- 4. There will be a solution in the 3rd and 4th quadrants (where sin is negative). $\sin 45^{\circ} = \frac{1}{\sqrt{2}}$ so $x = 180 + 45 = 225^{\circ}$ or $x = 360 45 = 315^{\circ}$.

- 5. There will be a solution in the 1st and 2nd quadrants (where sin is positive). $\sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$ so $x = \frac{\pi}{4}$ or $x = \pi \frac{\pi}{4} = \frac{3\pi}{4}$.
- 6. There will be a solution in the 2nd and 3rd quadrants (where cos is negative). $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$ so $x = \pi \frac{\pi}{4} = \frac{3\pi}{4}$ or $x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$.
- 7. There will be a solution in the 2nd and 4th quadrants (where tan is negative). $\tan \frac{\pi}{4} = 1$ so $x = \pi \frac{\pi}{4} = \frac{3\pi}{4}$ or $x = 2\pi \frac{\pi}{4} = \frac{7\pi}{4}$.
- 8. There will be a solution in the 1st and 3rd quadrants (where tan is positive). $\tan \frac{\pi}{3} = \sqrt{3}$ so $x = \frac{\pi}{3}$ or $x = \pi + \frac{\pi}{3} = \frac{4\pi}{3}$.
- 9. There will be a solution in the 1st and 4th quadrants (where cos is positive). $\cos 30^\circ = \frac{\sqrt{3}}{2}$ so $x = 30^\circ$ or $x = -30^\circ$.
- 10. There will be a solution in the 3rd and 4th quadrants (where sin is negative). $\sin 90^{\circ} = 1$ so $x = -180 + 90 = -90^{\circ}$ or $x = -90^{\circ}$ (i.e. the same single solution).
- 11. There will be a solution in the 2nd and 4th quadrants (where tan is negative). $\tan 30^\circ = \frac{1}{\sqrt{3}}$ so $x = 180 30 = 150^\circ$ or $x = -30^\circ$.
- 12. sin is zero for angles that fall on the x-axis, so x = -180 or x = 0 or x = 180.
- 13. There will be a solution in the 1st and 2nd quadrants (where sin is positive). $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$ so $x = \frac{\pi}{3}$ or $x = \pi \frac{\pi}{3} = \frac{2\pi}{3}$.
- 14. There will be a solution in the 2nd and 3rd quadrants (where cos is negative). $\cos \frac{\pi}{3} = \frac{1}{2}$ so $x = \pi \frac{\pi}{3} = \frac{2\pi}{3}$ or $x = -\pi + \frac{\pi}{3} = -\frac{2\pi}{3}$.
- 15. There will be a solution in the 1st and 2nd quadrants (where sin is positive). $\sin \frac{\pi}{6} = \frac{1}{2}$ so $x = \frac{\pi}{6}$ or $x = \pi \frac{\pi}{6} = \frac{5\pi}{6}$.
- 16. cos is zero for angles that fall on the *y*-axis, so $x = \frac{\pi}{2}$ or $x = -\frac{\pi}{2}$.
- 17. If $0 \le x \le 180^\circ$ then $0 \le 2x \le 360^\circ$. 2x must lie in the 1st or 3rd quadrant (where tan is positive). $\tan 30^\circ = \frac{1}{\sqrt{3}}$ so

$$2x = 30$$
 or $2x = 180 + 30 = 210$
 $x = 15^{\circ}$ $x = 105^{\circ}$

18. If $0 \le x \le \pi$ then $0 \le 4x \le 4\pi$. 4x must lie in the 1st or 4th quadrant (where cos is positive). $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$ so:

$$4x = \frac{\pi}{6} \qquad \text{or} \qquad 4x = 2\pi - \frac{\pi}{6}$$
$$x = \frac{\pi}{24} \qquad \qquad = \frac{11\pi}{6}$$
$$x = \frac{11\pi}{24}$$

or
$$4x = 2\pi + \frac{\pi}{6}$$
 or $4x = 4\pi - \frac{\pi}{6}$
 $= \frac{13\pi}{6}$ $= \frac{23\pi}{6}$
 $x = \frac{13\pi}{24}$ $x = \frac{23\pi}{24}$

19. If $-90^{\circ} \le x \le 90^{\circ}$ then $-270^{\circ} \le 3x \le 270^{\circ}$. 3x must lie in the 1st or 2nd quadrant (where sin is positive). $\sin 30^{\circ} = \frac{1}{2}$ so:

$$3x = -180 - 30$$
 or $3x = 30^{\circ}$ or $3x = 180 - 30$
= -210° $x = 10^{\circ}$ = 150°
 $x = -70^{\circ}$ $x = 50^{\circ}$

20. First rearrange the equation:

2

$$\sqrt{3}\sin 2x = 3$$
$$\sin 2x = \frac{3}{2\sqrt{3}}$$
$$\sin 2x = \frac{\sqrt{3}}{2}$$

If $0 \le x \le 2\pi$ then $0 \le 2x \le 4\pi$. 2x must lie in the 1st or 2nd quadrant (where sin is positive). $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$ so:

$$2x = \frac{\pi}{3} \qquad \text{or} \qquad 2x = \pi - \frac{\pi}{3}$$
$$x = \frac{\pi}{6} \qquad \qquad = \frac{2\pi}{3}$$
$$x = \frac{\pi}{3}$$
$$x = \frac{\pi}{3}$$
$$x = \frac{\pi}{3}$$
$$x = \frac{7\pi}{3} \qquad \text{or} \qquad 2x = 3\pi - \frac{\pi}{3}$$
$$x = \frac{7\pi}{3} \qquad \qquad = \frac{8\pi}{3}$$
$$x = \frac{7\pi}{6} \qquad \qquad x = \frac{4\pi}{3}$$

21. First rearrange the equation:

(

$$2\cos 3x + \sqrt{3} = 0$$
$$2\cos 3x = -\sqrt{3}$$
$$\cos 3x = -\frac{\sqrt{3}}{2}$$

If $0 \le x \le 2\pi$ then $0 \le 3x \le 6\pi$. 3x must lie in the 2nd or 3rd quadrant (where $\cos is negative$). $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$ so:

$$3x = \pi - \frac{\pi}{6} \qquad \text{or} \qquad 3x = \pi + \frac{\pi}{6}$$
$$= \frac{5\pi}{6} \qquad = \frac{7\pi}{6}$$
$$x = \frac{5\pi}{18} \qquad x = \frac{7\pi}{18}$$
$$\text{or} \qquad 3x = 3\pi - \frac{\pi}{6} \qquad \text{or} \qquad 3x = 3\pi + \frac{\pi}{6}$$
$$= \frac{17\pi}{6} \qquad = \frac{19\pi}{6}$$
$$x = \frac{17\pi}{18} \qquad x = \frac{19\pi}{18}$$

or
$$3x = 5\pi - \frac{\pi}{6}$$
 or $3x = 5\pi + \frac{\pi}{6}$
 $= \frac{29\pi}{6}$ $= \frac{31\pi}{6}$
 $x = \frac{29\pi}{18}$ $x = \frac{31\pi}{18}$

22. Using the null factor law:

$$\sin x + 1 = 0 \qquad \text{or} \qquad 2\sin x - 1 = 0$$
$$\sin x = -1 \qquad 2\sin x = 1$$
$$x = \frac{3\pi}{2} \qquad \sin x = \frac{1}{2}$$
$$x = \frac{\pi}{6}$$
$$\text{or} \qquad x = \pi - \frac{\pi}{6}$$
$$= \frac{5\pi}{6}$$

23. $\sin^2 x = \frac{1}{2}$ $\sin x = \pm \frac{1}{\sqrt{2}}$

This gives solutions in all 4 quadrants. $\sin 45^{\circ} = \frac{1}{\sqrt{2}}$ so:

- $x = 45^{\circ}$ or $x = 180 - 45 = 135^{\circ}$ or $x = 180 + 45 = 225^{\circ}$ or $x = 360 - 45 = 315^{\circ}$
- 24. $4\cos^2 x 3 = 0$

$$4\cos^2 x = 3$$
$$\cos^2 x = \frac{3}{4}$$
$$\cos x = \pm \frac{\sqrt{3}}{2}$$

This gives solutions in all 4 quadrants. $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$ so:

$$x = -\pi + \frac{\pi}{6} = -\frac{5\pi}{6}$$

or
$$x = -\frac{\pi}{6}$$

or
$$x = \frac{\pi}{6}$$

or
$$x = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$$

25.
$$\sin x = 0$$
 or $2\cos x - 1 = 0$
 $x = 0$ $2\cos x = 1$
or $x = 180^{\circ}$ $\cos x = -180^{\circ}$
 $x = 60^{\circ}$
or $x = -60^{\circ}$

26. $\tan x = 1.5$ has solutions in the 1st and 3rd quadrant where tan is positive. x = 0.98 is in the 1st quadrant so there must be another solution at $x = \pi + 0.98 = 3.14 + 0.98 = 4.12$.

27. (a)
$$(2p-1)(p+1) = 2p^2 + 2p - p - 1$$

= $2p^2 + p - 1$

(b) By substituting $p = \cos x$ and comparing with the previous answer we see we can factorise this:

$$2\cos^2 x + \cos x - 1 = 0$$
$$(2\cos x - 1)(\cos x + 1) = 0$$

Now using the null factor law:

$$2\cos x - 1 = 0 \qquad \text{or} \qquad \cos x + 1 = 0$$
$$2\cos x = 1 \qquad \qquad \cos x = -1$$
$$\cos x = \frac{1}{2} \qquad \qquad x = \pi$$
$$\text{or } x = -\pi$$
$$x = \frac{\pi}{3}$$
$$\text{or } x = -\frac{\pi}{3}$$

28. If $0 \le x \le 2\pi$ then $0 + \frac{\pi}{3} \le x + \frac{\pi}{3} \le 2\pi + \frac{\pi}{3}$ i.e. $\frac{\pi}{3} \le x + \frac{\pi}{3} \le \frac{7\pi}{3}$

 $x + \frac{\pi}{3}$ must be in the 1st or 2nd quadrant (where sin is positive), and $\sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$ so:

$$x + \frac{\pi}{3} = \pi - \frac{\pi}{4} \quad \text{or} \quad x + \frac{\pi}{3} = 2\pi + \frac{\pi}{4}$$
$$= \frac{3\pi}{4} \qquad \qquad = \frac{9\pi}{4}$$
$$x = \frac{3\pi}{4} - \frac{\pi}{3} \qquad \qquad x = \frac{9\pi}{4} - \frac{\pi}{3}$$
$$= \frac{9\pi}{12} - \frac{4\pi}{12} \qquad \qquad = \frac{27\pi}{12} - \frac{4\pi}{12}$$
$$= \frac{5\pi}{12} \qquad \qquad = \frac{23\pi}{12}$$

(Note: we can't use $x + \frac{\pi}{3} = \frac{\pi}{4}$ because it is outside the specified interval of possible values for x.)

Miscellaneous Exercise 2

1.
$$\overrightarrow{AP} = \frac{5}{7}\overrightarrow{AB}$$

 $\overrightarrow{OP} = \overrightarrow{OA} + \frac{5}{7}(\overrightarrow{OB} - \overrightarrow{OA})$
 $= \frac{2}{7}\overrightarrow{OA} + \frac{5}{7}\overrightarrow{OB}$
 $= \frac{2}{7}(19\mathbf{i} + 18\mathbf{j}) + \frac{5}{7}(26\mathbf{i} - 17\mathbf{j})$
 $= \frac{38}{7}\mathbf{i} + \frac{36}{7}\mathbf{j} + \frac{130}{7}\mathbf{i} - \frac{85}{7}\mathbf{j}$
 $= \frac{38 + 130}{7}\mathbf{i} + \frac{36 - 85}{7}\mathbf{j}$
 $= 24\mathbf{i} - 7\mathbf{j}$
 $|\overrightarrow{OP}| = \sqrt{24^2 + 7^2}$
 $= 25$ units

2. (a)
$$8^3 \times 8^4 = 8^{3+4} = 8^7$$

(b) $\sqrt{8} = 8^{\frac{1}{2}}$
(c) $64 = 8^2$
(d) $2 = \sqrt[3]{8} = 8^{\frac{1}{3}}$
(e) $4 = 2^2 = \left(8^{\frac{1}{3}}\right)^2 = 8^{\frac{2}{3}}$
(f) $0.125 = \frac{1}{8} = 8^{-1}$

3. Substitute -3 + 7i for z:

L.H.S.:
$$z^2 = (-3 + 7i)^2$$

= 9 - 42i + 49i²
= 9 - 49 - 42i
= -40 - 42i
= R.H.S.

It should be clear that if z = -3 + 7i is a solution then z = -(-3 + 7i) = 3 - 7i is also a solution. How would we go about finding these solutions without first being told one of them? Let the solution be z = a + bi, with a and b real, then:

$$(a + bi)^{2} = -40 - 42i$$

$$a^{2} + 2abi + b^{2}i^{2} = -40 - 42i$$

$$a^{2} - b^{2} + 2abi = -40 - 42i$$

$$2ab = -42$$

$$ab = -21$$

$$b = -\frac{21}{a}$$

$$a^{2} - b^{2} = -40$$

$$a^{2} - \left(-\frac{21}{a}\right)^{2} = -40$$

$$a^{2} - \frac{441}{a^{2}} = -40$$

$$a^{4} - 441 = -40a^{2}$$

$$a^{4} + 40a^{2} - 441 = 0$$

$$(a^{2} + 49)(a^{2} - 9) = 0$$

$$a^{2} = 9$$
$$a = \pm 3$$
$$b = -\frac{21}{a}$$
$$= \mp 7$$

(We would not need to consider $a^2 + 49 = 0$ because this has no real solution and we stipulated a was real.)

- 4. (a) $8 = 2^3$ so $\log_2 8 = 3$ (b) $25 = 5^2$ so $\log_5 25 = 2$ (c) $0.2 = \frac{1}{5} = 5^{-1}$ so $\log_5 0.2 = -1$ (d) $\sqrt{2} = 2^{\frac{1}{2}}$ so $\log_2 \sqrt{2} = \frac{1}{2}$ (e) $1000 = 10^3$ so $\log 1000 = 3$ (f) $a^3 \times a^7 = a^{10}$ so $\log_a (a^3 \times a^7) = 10$
- 5. Rearrange the equation first:

$$\sqrt{2}\sin 5x = 1$$
$$\sin 5x - \frac{1}{\sqrt{2}}$$

If $0 \le x \le \pi$ then $0 \le 5x \le 5\pi$. 5x must be in the 1st or 2nd quadrant (where sin is positive), and $\sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$ so:

$$5x = \frac{\pi}{4} \qquad \text{or} \qquad 5x = \pi - \frac{\pi}{4}$$
$$x = \frac{\pi}{20} \qquad \qquad = \frac{3\pi}{4}$$
$$x = \frac{3\pi}{20}$$
$$\text{or} \qquad 5x = 2\pi + \frac{\pi}{4} \qquad \text{or} \qquad 5x = 3\pi - \frac{\pi}{4}$$
$$= \frac{9\pi}{4} \qquad \qquad = \frac{11\pi}{4}$$
$$x = \frac{9\pi}{20} \qquad \qquad x = \frac{11\pi}{20}$$
$$\text{or} \qquad 5x = 4\pi + \frac{\pi}{4} \qquad \text{or} \qquad 5x = 5\pi - \frac{\pi}{4}$$
$$= \frac{17\pi}{4} \qquad \qquad = \frac{19\pi}{4}$$
$$x = \frac{17\pi}{20} \qquad \qquad x = \frac{19\pi}{20}$$

6. (a)
$$\bar{z} = -5\sqrt{2}i$$

(b) $z^2 = (5\sqrt{2}i)^2 = 25 \times 2 \times i^2 = -50$
(c) $(1+z)^2 = 1+2z+z^2 = 1+10\sqrt{2}i-50 = -49+10\sqrt{2}i$

7. (a)
$$z + w = 4 + 7i + 2 - i$$

 $= 6 + 6i$
(b) $zw = (4 + 7i)(2 - i)$
 $= 8 - 4i + 14i - 7i^2$
 $= 8 + 7 + 10i$
 $= 15 + 10i$
(c) $\overline{z} = 4 - 7i$

8.

$$\begin{array}{ll} (\mathrm{d}) & \bar{z}\bar{w} = (4-7\mathrm{i})(2+\mathrm{i}) \\ &= 8+4\mathrm{i}-14\mathrm{i}-7\mathrm{i}^2 \\ &= 8+7-10\mathrm{i} \\ &= 15-10\mathrm{i} \\ \end{array} \\ (\mathrm{e}) & z^2 = (4+7\mathrm{i})^2 \\ &= 16+56\mathrm{i}+49\mathrm{i}^2 \\ &= 16+56\mathrm{i}-49 \\ &= -33+56\mathrm{i} \\ (\mathrm{f}) & (zw)^2 = (15+10\mathrm{i})^2 \\ &= 225+300\mathrm{i}+100\mathrm{i}^2 \\ &= 225+300\mathrm{i}-100 \\ &= 125+300\mathrm{i} \\ \end{array} \\ (\mathrm{g}) & p = \mathrm{Re}(\bar{z}) + \mathrm{Im}(\bar{w})\mathrm{i} \\ &p = \mathrm{Re}(z) - \mathrm{Im}(w)\mathrm{i} \\ &= 4+\mathrm{i} \\ \end{array} \\ (\mathrm{a}) & (2,3) \\ (\mathrm{b}) & (-5,6) \\ (\mathrm{c}) & (0,7) \\ (\mathrm{d}) & (3,0) \\ (\mathrm{e}) & (3,8) + (-2,1) = (1,9) \\ (\mathrm{f}) & (3,-5) + (3,5) = (6,0) \\ (\mathrm{g}) & (5,3) - (2,0) = (3,3) \\ (\mathrm{h}) & (2,7) - (2,-7) = (0,14) \\ (\mathrm{i}) & (0,2) \times (3,5) = (0 \times 3 - 2 \times 5, 0 \times 5 + 2 \times 3) = \\ & (-10,6) \\ (\mathrm{j}) & (-3,1) \times (-3,-1) = ((-3)^2 + (1)^2,0) = \\ & (10,0) \\ (\mathrm{k}) & (3,0) \div (2,-4) = \frac{3}{2-4\mathrm{i}} \times \frac{2+4\mathrm{i}}{2+4\mathrm{i}} \\ &= \frac{6+12\mathrm{i}}{20} \\ &= 0.3+0.6\mathrm{i} \\ &= (0.3,0.6) \\ (\mathrm{l}) & (3,-8) \div (3,8) = \frac{3-8\mathrm{i}}{3+8\mathrm{i}} \times \frac{3-8\mathrm{i}}{3-8\mathrm{i}} \\ &= \frac{3^3-4\mathrm{s}\mathrm{i} \times \frac{3-8\mathrm{i}}{73} \\ &= \frac{9-4\mathrm{s}\mathrm{i}-6\mathrm{4}}{9+6\mathrm{4}} \\ &= \frac{-55-4\mathrm{8}\mathrm{i}}{73} \\ &= \frac{(-55-4\mathrm{8}\mathrm{i}}{73} \\ &= (-\frac{-55-4\mathrm{8}\mathrm{i}}{73} \\ &= (-\frac{-55-4\mathrm{8}\mathrm{i}}{73} \\ &= (-\frac{-55-4\mathrm{8}\mathrm{i}}{73} \\ &= (-\frac{5-7+4\mathrm{8}\mathrm{i}}{73} \\ \end{array}$$

9. If one solution is
$$x = 2 + 3i$$
 then
 $(2+3i)^2 + b(2+3i) + c = 0$
 $(4+12i - 9) + b(2+3i) + c = 0$
 $-5 + 12i + 2b + 3bi + c = 0$
 $(-5+2b+c) + (12+3b)i = 0$
 $12 + 3b = 0$
 $b = -4$
 $-5 + 2b + c = 0$
 $-5 - 8 + c = 0$
 $c = 13$
 $x^2 - 4x + 13 = 0$

10. First factor the equation:

 $2\cos^2 x - \cos x - 1 = 0$ $(\cos x - 1)(2\cos x + 1) = 0$

Now use the null factor law:

$$\cos x - 1 = 0 \quad \text{or} \quad 2\cos x + 1 = 0$$

$$\cos x = 1 \qquad 2\cos x = -1$$

$$x = 0 \qquad \cos x = -\frac{1}{2}$$

$$x = \pi - \frac{\pi}{3}$$

$$= \frac{2\pi}{3}$$

or
$$x = -\pi + \frac{\pi}{3}$$

$$= -\frac{2\pi}{3}$$

1.
$$3\sin x^{\circ} + 1 = 0$$

11.
$$3\sin x + 1 \equiv 0$$

 $3\sin x^\circ = -1$
 $\sin x^\circ = -\frac{1}{3}$

1

Solutions are in the 3rd and 4th quadrant where sin is negative. $\sin 19.5^\circ = \frac{1}{3}$

$$x = 180 + 19.5$$

= 199.5°
or $x = 360 - 19.5$
= 340.5°
or $x = 540 + 19.5$
= 559.5°
or $x = 720 - 19.5$
= 700.5°

12. The period is π .

$$\frac{2\pi}{a} = \pi$$
$$2\pi = a\pi$$
$$a = 2$$

The solid line is phase shifted to the left $\frac{\pi}{3}$ so $b = \frac{\pi}{3}$.