Chapter 9

Exercise 9A

No working is needed for questions 1-5. Refer to the answers in Sadler.
6. (a) $r=\sqrt{3^{2}+3^{2}}$

$$
=3 \sqrt{2}
$$

θ is in quadrant I.

$$
\begin{aligned}
\tan \theta & =\frac{3}{3} \\
\theta & =\frac{\pi}{4}
\end{aligned}
$$

Polar coordinates are $\left(3 \sqrt{2}, \frac{\pi}{4}\right)$.
(b) $r=\sqrt{1^{2}+(\sqrt{3})^{2}}$

$$
=2
$$

θ is in quadrant I.

$$
\begin{aligned}
\tan \theta & =\frac{\sqrt{3}}{1} \\
\theta & =\frac{\pi}{3}
\end{aligned}
$$

Polar coordinates are $\left(2, \frac{\pi}{3}\right)$.
(c) $r=\sqrt{(-2 \sqrt{3})^{2}+2^{2}}$

$$
=4
$$

θ is in quadrant II.

$$
\begin{aligned}
\tan \theta & =\frac{2}{-2 \sqrt{3}} \\
& =-\frac{1}{\sqrt{3}} \\
\theta & =\frac{5 \pi}{6}
\end{aligned}
$$

Polar coordinates are $\left(4, \frac{5 \pi}{6}\right)$.
(d) $r=\sqrt{(-2 \sqrt{3})^{2}+(-2)^{2}}$

$$
=4
$$

θ is in quadrant III.

$$
\begin{aligned}
\tan \theta & =\frac{-2}{-2 \sqrt{3}} \\
& =\frac{1}{\sqrt{3}} \\
\theta & =\frac{7 \pi}{6}
\end{aligned}
$$

Polar coordinates are $\left(4, \frac{7 \pi}{6}\right)$.
(e) $r=5, \theta=\frac{3 \pi}{2}$

Polar coordinates are ($5, \frac{3 \pi}{2}$).
(f) $r=\sqrt{7^{2}+(-7)^{2}}$

$$
=7 \sqrt{2}
$$

θ is in quadrant IV.

$$
\begin{aligned}
\tan \theta & =\frac{-7}{7} \\
& =-1 \\
\theta & =\frac{7 \pi}{4}
\end{aligned}
$$

Polar coordinates are $\left(7 \sqrt{2}, \frac{7 \pi}{4}\right)$.
(g) $r=1, \theta=\pi$

Polar coordinates are $(1, \pi)$.
(h) $r=\sqrt{(-5)^{2}+(-5 \sqrt{3})^{2}}$

$$
=10
$$

θ is in quadrant III.

$$
\begin{aligned}
\tan \theta & =\frac{-5 \sqrt{3}}{-5} \\
& =\sqrt{3} \\
\theta & =\frac{4 \pi}{3}
\end{aligned}
$$

Polar coordinates are ($10, \frac{4 \pi}{3}$).
7. (a) $x=4 \cos 30^{\circ}$

$$
\begin{aligned}
& =4 \times \frac{\sqrt{3}}{2} \\
& =2 \sqrt{3} \\
y & =4 \sin 30^{\circ} \\
& =4 \times \frac{1}{2} \\
& =2
\end{aligned}
$$

Cartesian coordinates are $(2 \sqrt{3}, 2)$.
(b) $x=10 \cos 135^{\circ}$

$$
\begin{aligned}
& =10 \times-\frac{\sqrt{2}}{2} \\
& =-5 \sqrt{2} \\
y & =10 \sin 135^{\circ} \\
& =10 \times \frac{\sqrt{2}}{2} \\
& =5 \sqrt{2}
\end{aligned}
$$

Cartesian coordinates are $(-5 \sqrt{2}, 5 \sqrt{2})$.
(c) $x=3 \cos \left(-90^{\circ}\right)$

$$
\begin{aligned}
& =0 \\
y & =3 \sin \left(-90^{\circ}\right) \\
& =-3
\end{aligned}
$$

Cartesian coordinates are $(0,-3)$.
(d) $x=7 \sqrt{2} \cos \left(-135^{\circ}\right)$

$$
\begin{aligned}
& =7 \sqrt{2} \times-\frac{\sqrt{2}}{2} \\
& =-7 \\
y & =7 \sqrt{2} \sin \left(-135^{\circ}\right) \\
& =7 \sqrt{2} \times-\frac{\sqrt{2}}{2} \\
& =-7
\end{aligned}
$$

Cartesian coordinates are $(-7,-7)$.
(e) $x=3 \cos 40^{\circ}$

$$
=2.30
$$

$y=3 \sin 40^{\circ}$

$$
=1.93
$$

Cartesian coordinates are $(2.30,1.93)$.
(f) $x=5 \cos \left(-50^{\circ}\right)$

$$
\begin{aligned}
& =3.21 \\
y & =5 \sin \left(-50^{\circ}\right) \\
& =-3.83
\end{aligned}
$$

Cartesian coordinates are $(3.21,-3.83)$.
(g) $x=4 \cos 170^{\circ}$

$$
\begin{aligned}
& =-3.94 \\
y & =4 \sin 170^{\circ} \\
& =0.69
\end{aligned}
$$

Cartesian coordinates are $(-3.94,0.69)$.
(h) $x=10 \cos \left(-100^{\circ}\right)$

$$
\begin{aligned}
& =-1.74 \\
y & =10 \sin \left(-100^{\circ}\right) \\
& =-9.85
\end{aligned}
$$

Cartesian coordinates are $(-1.74,-9.85)$.

Miscellaneous Exercise 9

1. $3^{x-1}=5$
$\log 3^{x-1}=\log 5$
$(x-1) \log 3=\log 5$

$$
\begin{aligned}
x-1 & =\frac{\log 5}{\log 3} \\
x & =\frac{\log 5}{\log 3}+1
\end{aligned}
$$

2. $3^{x}-1=5$

$$
3^{x}=6
$$

$\log 3^{x}=\log 6$
$x \log 3=\log 6$

$$
x=\frac{\log 6}{\log 3}
$$

3. (a) $\log _{x} 64=3$

$$
\begin{aligned}
x^{3} & =64 \\
x & =\sqrt[3]{64} \\
& =4
\end{aligned}
$$

(b) $\log _{x} 64=2$

$$
\begin{aligned}
x^{2} & =64 \\
x & =\sqrt{64} \\
& =8
\end{aligned}
$$

(c) $\log _{x} 64=6$

$$
\begin{aligned}
x^{6} & =64 \\
x & =\sqrt[6]{64} \\
& =2
\end{aligned}
$$

(d) $\log _{10} 100=x$

$$
x=2
$$

(e) $\log 17-\log 2=\log x$

$$
\begin{aligned}
\log \frac{17}{2} & =x \\
x & =\frac{17}{2}
\end{aligned}
$$

(f) $\log 17+\log 2=\log x$

$$
\begin{aligned}
\log (17 \times 2) & =\log x \\
x & =34
\end{aligned}
$$

(g) $\log \sqrt{2}=x \log 2$

$$
\log 2^{\frac{1}{2}}=x \log 2
$$

$$
\frac{1}{2} \log 2=x \log 2
$$

$$
x=\frac{1}{2}
$$

(h) $3 \log 2=\log x$ $\log 2^{3}=\log x$

$$
x=8
$$

4. (a) $\mathrm{f}(-21)=1-\frac{1}{\sqrt{4-(-21)}}$

$$
\begin{aligned}
& =1-\frac{1}{\sqrt{25}} \\
& =1-\frac{1}{5} \\
& =\frac{4}{5}
\end{aligned}
$$

(b) $\mathrm{f}(\mathrm{f}(3))=\mathrm{f}\left(1-\frac{1}{\sqrt{4-(3)}}\right)$

$$
\begin{aligned}
& =\mathrm{f}\left(1-\frac{1}{\sqrt{1}}\right) \\
& =\mathrm{f}(1-1) \\
& =\mathrm{f}(0) \\
& =1-\frac{1}{\sqrt{4-0}} \\
& =1-\frac{1}{\sqrt{4}} \\
& =1-\frac{1}{2} \\
& =\frac{1}{2}
\end{aligned}
$$

(c) Domain: the square root may not be nega-
tive so

$$
\begin{aligned}
& 4-x \geq 0 \\
& x \leq 4
\end{aligned}
$$

In addition, the denominator of the fraction may not be zero so

$$
\begin{array}{r}
\sqrt{4-x} \neq 0 \\
4-x \neq 0 \\
x \neq 4
\end{array}
$$

Combining these we obtain a domain $\{x \in$ $\mathbb{R}: x<4\}$
(d) Range: the fraction can not be zero, neither can it be negative (since both numerator and denominator are positive), so $y<1$ and the range is $\{y \in \mathbb{R}: y<1\}$
(e) Domain and range of $\mathrm{f}^{-1}(x)$ are the range and domain respectively of $\mathrm{f}(x)$. Domain: $\{x \in \mathbb{R}: x<1\} ;$ Range: $\{y \in \mathbb{R}: y<4\}$

$$
\begin{aligned}
y & =1-\frac{1}{\sqrt{4-x}} \\
\frac{1}{\sqrt{4-x}} & =1-y \\
\sqrt{4-x} & =\frac{1}{1-y} \\
4-x & =\left(\frac{1}{1-y}\right)^{2} \\
x & =4-\left(\frac{1}{1-y}\right)^{2} \\
& =4-\frac{1}{(1-y)^{2}} \\
\mathrm{f}^{-1}(x) & =4-\frac{1}{(1-x)^{2}}
\end{aligned}
$$

5. (a) $\overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{Q}}-\overrightarrow{\mathrm{P}}$

$$
\begin{aligned}
& =(13 \mathbf{i}-2 \mathbf{j})-(-7 \mathbf{i}+13 \mathbf{j}) \\
& =20 \mathbf{i}-15 \mathbf{j} \\
\mathrm{PQ} & =\sqrt{20^{2}+15^{2}} \\
& =25
\end{aligned}
$$

$\mathrm{PR}: \mathrm{PQ}=3: 5$ so $\mathrm{PR}=\frac{3}{5} \mathrm{PQ}=15$
$\mathrm{RQ}=\mathrm{PQ}-\mathrm{PR}=25-15=10$ units
(b) $\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{P}}+\frac{3}{5} \overrightarrow{\mathrm{PQ}}$

$$
\begin{aligned}
& =(-7 \mathbf{i}+13 \mathbf{j})+\frac{3}{5}(20 \mathbf{i}-15 \mathbf{j}) \\
& =(-7 \mathbf{i}+13 \mathbf{j})+(12 \mathbf{i}-9 \mathbf{j}) \\
& =5 \mathbf{i}+4 \mathbf{j}
\end{aligned}
$$

(c) $\mathrm{OR}=\sqrt{5^{2}+4^{2}}=\sqrt{41} \approx 6.4$ units.
6. First solve $|x+6|=|2 x|$:

$$
\begin{aligned}
& x+6=2 x \quad \text { or } \quad x+6=-2 x \\
& x=6 \\
& 3 x=-6 \\
& x=-2
\end{aligned}
$$

Now test one of the three intervals delimited by these two solutions.

- $x<-2$

Try a value, say -3 :
Is it true that $|(-3)+6| \leq|2(-3)| ?$
Yes $(3 \leq 6)$.
Solution set is

$$
\{x \in \mathbb{R}: x \leq-2\} \cup\{x \in \mathbb{R}: x \geq 6\}
$$

7.

Let x be the straight line distance AB

$$
\begin{aligned}
3^{2} & =x^{2}+2^{2}-2 x \times 2 \cos 24^{\circ} \\
x^{2}-\left(4 \cos 24^{\circ}\right) x+4 & =9 \\
x & =4.715 \mathrm{~km}
\end{aligned}
$$

(ignoring the negative root.)
The road route is $2+3-4.715=0.285 \mathrm{~km}$ (or about 300 m) longer than the straight line distance.

An alternative to solving this algebraically would be to use the geometry app in the ClassPad to construct a scale diagram.

8.

First consider $\triangle \mathrm{ABD}$ to determine the length AB:

$$
\begin{aligned}
\tan 28^{\circ} & =\frac{60}{\mathrm{AB}} \\
\mathrm{AB} & =\frac{60}{\tan 28^{\circ}} \\
& =112.84 \mathrm{~m}
\end{aligned}
$$

Next consider $\triangle \mathrm{CBD}$ to determine the length CB
D
0
8
0

$$
\begin{aligned}
\tan 17^{\circ} & =\frac{60}{\mathrm{CB}} \\
\mathrm{CB} & =\frac{60}{\tan 17^{\circ}} \\
& =196.25 \mathrm{~m}
\end{aligned}
$$

Finally consider $\triangle \mathrm{ABC}$ to determine the length and direction of AC :

$$
\begin{aligned}
d & =\sqrt{112.84^{2}+196.25^{2}} \\
& =226.38 \mathrm{~m} \\
\tan \theta & =\frac{196.25}{112.84} \\
\theta & =60.10^{\circ}
\end{aligned}
$$

C is 226 m from A on a bearing of 060°.
9.

(a) $\cos (\pi-\theta)=\frac{80-60}{60}$

$$
\begin{aligned}
\pi-\theta & =\cos ^{-1} \frac{20}{60} \\
& =1.23 \\
\theta & =\pi-1.23 \\
& =1.91
\end{aligned}
$$

(b) $l=r \theta=60 \times 1.91 \approx 115 \mathrm{~cm}$
10. $\mathrm{f} \circ \mathrm{g}(x)=\mathrm{f}(2 x-1) \quad \mathrm{g} \circ \mathrm{f}(x)=\mathrm{g}\left(\frac{3}{x}\right)$

$$
\begin{aligned}
=\frac{3}{2 x-1} & =2\left(\frac{3}{x}\right)-1 \\
& =\frac{6}{x}-1
\end{aligned}
$$

$\mathrm{f} \circ \mathrm{g}(x)$ has domain determined by $2 x-1 \neq 0$ so the domain is $\{x \in \mathbb{R}: x \neq 0.5\}$ The range of $\mathrm{f} \circ \mathrm{g}(x)$ is $\{y \in \mathbb{R}: y \neq 0\}$. $\mathrm{g} \circ \mathrm{f}(x)$ has domain $\{x \in \mathbb{R}: x \neq 0\}$. The range of $\mathrm{g} \circ \mathrm{f}(x)$ is determined by $\frac{6}{x} \neq 0$ so $\frac{6}{x}-1 \neq-1$ and the range is $\{y \in \mathbb{R}: y \neq-1\}$.
11. Let the original quantity be q. The amount remaining after t years is $q(0.95)^{t}$.

$$
\begin{aligned}
q(0.95)^{t} & =0.2 q \\
0.95^{t} & =0.2 \\
\log (0.95)^{t} & =\log 0.2 \\
t \log 0.95 & =\log 0.2 \\
t & =\frac{\log 0.2}{\log 0.95} \\
& =31.4
\end{aligned}
$$

The company can expect the field to remain profitable for 31 years. It will become unprofitable part-way through the 32nd year.
12. (a) $\log _{c} 5=\log _{c} \frac{10}{2}$

$$
\begin{aligned}
& =\log _{c} 10-\log _{c} 2 \\
& =q-p
\end{aligned}
$$

(b) $\log _{c} 40=\log _{c}\left(2^{2} \times 10\right)$

$$
\begin{aligned}
& =2 \log _{c} 2+\log _{c} 10 \\
& =2 p+q
\end{aligned}
$$

(c) $\log _{c} 200=\log _{c}\left(2 \times 10^{2}\right)$

$$
\begin{aligned}
& =\log _{c} 2+2 \log _{c} 10 \\
& =p+2 q
\end{aligned}
$$

(d) $\log _{c}(8 c)=\log _{c}\left(2^{3} \times c\right)$

$$
\begin{aligned}
& =3 \log _{c} 2+\log _{c} c \\
& =3 p+1
\end{aligned}
$$

(e) $\quad 2^{\left(\log _{2} 10\right)}=10$
$\log _{c} 2^{\left(\log _{2} 10\right)}=\log _{c} 10$
$\log _{2} 10 \log _{c} 2=\log _{c} 10$

$$
\log _{2} 10=\frac{\log _{c} 10}{\log _{c} 2}
$$

$$
=\frac{q}{p}
$$

(f) $\quad 10^{(\log 2)}=2$
$\log _{c} 10^{(\log 2)}=\log _{c} 2$
$\log 2 \log _{c} 10=\log _{c} 2$

$$
\begin{aligned}
\log 2 & =\frac{\log _{c} 2}{\log _{c} 10} \\
& =\frac{p}{q}
\end{aligned}
$$

13. (a) ${ }_{C} \mathbf{r}_{\mathrm{A}}={ }_{\mathrm{C}} \mathbf{r}_{\mathrm{B}}+{ }_{\mathrm{B}} \mathbf{r}_{\mathrm{A}}$

$$
\begin{aligned}
& =(6 \mathbf{i}-\mathbf{j})+(4 \mathbf{i}+5 \mathbf{j}) \\
& =10 \mathbf{i}+4 \mathbf{j} \\
\mathrm{AC} & =\sqrt{10^{2}+4^{2}} \\
& =\sqrt{116} \\
& =2 \sqrt{29}
\end{aligned}
$$

(b) $\mathbf{r}_{\mathrm{C}}={ }_{\mathrm{C}} \mathbf{r}_{\mathrm{A}}+\mathbf{r}_{\mathrm{A}}$

$$
\begin{aligned}
& =(10 \mathbf{i}+4 \mathbf{j})+(-4 \mathbf{i}+6 \mathbf{j}) \\
& =6 \mathbf{i}+10 \mathbf{j}
\end{aligned}
$$

(c) $\mathbf{r}_{\mathrm{A}}+0.5 \overrightarrow{\mathrm{AC}}=(-4 \mathbf{i}+6 \mathbf{j})+0.5(10 \mathbf{i}+4 \mathbf{j})$

$$
\begin{aligned}
& =(-4 \mathbf{i}+6 \mathbf{j})+(5 \mathbf{i}+2 \mathbf{j}) \\
& =\mathbf{i}+8 \mathbf{j}
\end{aligned}
$$

14. (a) Points P_{1} and P_{2} lie on the y-axis, so $x=0$ for both. For $\mathrm{P}_{1}, y=|x-a|=|0-a|=a$ so the coordinates of P_{1} are $(0, a)$.
For $\mathrm{P}_{2}, y=|0.5 x-b|=|0.5(0)-b|=b$ so the coordinates of P_{2} are $(0, b)$.
(b) Since P_{1} is above P_{2} we can conclude $a>b$.
(c) For $\mathrm{P}_{4},|x-a|=0$ so $x=a$ and the coordinates are $(a, 0)$.
For $\mathrm{P}_{6},|0.5 x-b|=0$ so $x=2 b$ and the coordinates are $(2 b, 0)$.
(d) At P_{3},

$$
\begin{aligned}
-(x-a) & =-(0.5 x-b) \\
x-a & =0.5 x-b \\
0.5 x & =a-b \\
x & =2 a-2 b \\
y & =-(x-a) \\
& =-(2 a-2 b-a) \\
& =-(a-2 b) \\
& =2 b-a
\end{aligned}
$$

so the coordinates of P_{3} are $(2 a-2 b, 2 b-a)$ At P_{5},

$$
\begin{aligned}
x-a & =-(0.5 x-b) \\
x-a & =-0.5 x+b \\
1.5 x & =a+b \\
x & =\frac{2 a+2 b}{3} \\
y & =x-a \\
& =\frac{2 a+2 b}{3}-a \\
& =\frac{2 a+2 b-3 a}{3} \\
& =\frac{2 b-a}{3}
\end{aligned}
$$

so the coordinates of P_{5} are $\left(\frac{2 a+2 b}{3}, \frac{2 b-a}{3}\right)$
(e)

Regions A, E and G.
(f)

Region C.
(g)

Regions B and F.
(h)

Region D.
15. (a) $\overrightarrow{\mathrm{AC}}=2 \overrightarrow{\mathrm{AB}}=2 \mathbf{b}$
(b) $\overrightarrow{\mathrm{AF}}=\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BF}}=\mathbf{b}+\frac{1}{3} \mathbf{b}=\frac{4}{3} \mathbf{b}$
(c) $\overrightarrow{\mathrm{DC}}=\overrightarrow{\mathrm{DB}}+\overrightarrow{\mathrm{BC}}=\mathbf{a}+\mathbf{b}$
(d) $\overrightarrow{\mathrm{EC}}=\overrightarrow{\mathrm{ED}}+\overrightarrow{\mathrm{DC}}=\mathbf{b}+\mathbf{a}+\mathbf{b}=\mathbf{a}+2 \mathbf{b}$
(e) $\overrightarrow{\mathrm{EG}}=\overrightarrow{\mathrm{ED}}+\frac{1}{2} \overrightarrow{\mathrm{DC}}=\mathbf{b}+\frac{1}{2}(\mathbf{a}+\mathbf{b})=\frac{1}{2} \mathbf{a}+\frac{3}{2} \mathbf{b}$
(f) $\overrightarrow{\mathrm{GF}}=\overrightarrow{\mathrm{GC}}+\overrightarrow{\mathrm{CF}}=\frac{1}{2}(\mathbf{a}+\mathbf{b})+\frac{2}{3}(-\mathbf{b})=$

$$
\begin{aligned}
\overrightarrow{\mathrm{b}} & =\overrightarrow{\mathrm{GC}}+\overrightarrow{\mathrm{CH}} \\
h \overrightarrow{\mathrm{GF}} & =\frac{1}{2} \overrightarrow{\mathrm{DC}}-k \overrightarrow{\mathrm{EC}} \\
h\left(\frac{1}{2} \mathbf{a}-\frac{1}{6} \mathbf{b}\right) & =\frac{1}{2}(\mathbf{a}+\mathbf{b})-k(\mathbf{a}+2 \mathbf{b}) \\
\frac{3 h \mathbf{a}-h \mathbf{b}}{6} & =\frac{\mathbf{a}+\mathbf{b}-2 k \mathbf{a}-4 k \mathbf{b}}{2} \\
3 h \mathbf{a}-h \mathbf{b} & =3 \mathbf{a}+3 \mathbf{b}-6 k \mathbf{a}-12 k \mathbf{b} \\
3 h \mathbf{a}-3 \mathbf{a}+6 k \mathbf{a} & =3 \mathbf{b}-12 k \mathbf{b}+h \mathbf{b} \\
(3 h+6 k-3) \mathbf{a} & =(h-12 k+3) \mathbf{b} \\
3 h+6 k-3 & =0 \\
h+2 k & =1 \\
h-12 k+3 & =0 \\
h-12 k & =-3 \\
14 k & =4 \\
k & =\frac{2}{7} \\
h & =1-\frac{4}{7} \\
h & =\frac{3}{7}
\end{aligned}
$$

