Chapter 9

Exercise 9A

No working is needed for questions 1–5. Refer to the answers in Sadler.

6. (a)
$$r = \sqrt{3^2 + 3^2}$$

 $= 3\sqrt{2}$
 θ is in quadrant I.
 $\tan \theta = \frac{3}{3}$
 $\theta = \frac{\pi}{4}$
Polar coordinates are $(3\sqrt{2}, \frac{\pi}{4})$.
(b) $r = \sqrt{1^2 + (\sqrt{3})^2}$
 $= 2$
 θ is in quadrant I.
 $\tan \theta = \frac{\sqrt{3}}{1}$
 $\theta = \frac{\pi}{3}$
Polar coordinates are $(2, \frac{\pi}{3})$.
(c) $r = \sqrt{(-2\sqrt{3})^2 + 2^2}$
 $= 4$
 θ is in quadrant II.
 $\tan \theta = \frac{2}{-2\sqrt{3}}$
 $= -\frac{1}{\sqrt{3}}$
 $\theta = \frac{5\pi}{6}$
Polar coordinates are $(4, \frac{5\pi}{6})$.
(d) $r = \sqrt{(-2\sqrt{3})^2 + (-2)^2}$
 $= 4$
 θ is in quadrant III.
 $\tan \theta = \frac{-2}{-2\sqrt{3}}$
 $= \frac{1}{\sqrt{3}}$
 $\theta = \frac{7\pi}{6}$
Polar coordinates are $(4, \frac{7\pi}{6})$.
(e) $r = 5, \theta = \frac{3\pi}{2}$
Polar coordinates are $(5, \frac{3\pi}{2})$.
(f) $r = \sqrt{7^2 + (-7)^2}$
 $= 7\sqrt{2}$
 θ is in quadrant IV.
 $\tan \theta = \frac{-7}{7}$
 $= -1$
 $\theta = \frac{7\pi}{4}$
Polar coordinates are $(7\sqrt{2}, \frac{7\pi}{4})$.
(g) $r = 1, \theta = \pi$
Polar coordinates are $(1, \pi)$.

(h)
$$r = \sqrt{(-5)^2 + (-5\sqrt{3})^2}$$

= 10
 θ is in quadrant III.
 $\tan \theta = \frac{-5\sqrt{3}}{-5}$
 $= \sqrt{3}$
 $\theta = \frac{4\pi}{3}$
Polar coordinates are $(10, \frac{4\pi}{3})$.
7. (a) $x = 4 \cos 30^{\circ}$
 $= 4 \times \frac{\sqrt{3}}{2}$
 $= 2\sqrt{3}$
 $y = 4 \sin 30^{\circ}$
 $= 4 \times \frac{1}{2}$
 $= 2$
Cartesian coordinates are $(2\sqrt{3}, 2)$.
(b) $x = 10 \cos 135^{\circ}$
 $= 10 \times -\frac{\sqrt{2}}{2}$
 $= -5\sqrt{2}$
 $y = 10 \sin 135^{\circ}$
 $= 10 \times \frac{\sqrt{2}}{2}$
 $= 5\sqrt{2}$
Cartesian coordinates are $(-5\sqrt{2}, 5\sqrt{2})$.
(c) $x = 3 \cos(-90^{\circ})$
 $= 0$
 $y = 3 \sin(-90^{\circ})$
 $= -3$
Cartesian coordinates are $(0, -3)$.
(d) $x = 7\sqrt{2} \cos(-135^{\circ})$
 $= 7\sqrt{2} \times -\frac{\sqrt{2}}{2}$
 $= -7$
 $y = 7\sqrt{2} \sin(-135^{\circ})$
 $= 7\sqrt{2} \times -\frac{\sqrt{2}}{2}$
 $= -7$
 $y = 7\sqrt{2} \sin(-135^{\circ})$
 $= 7\sqrt{2} \times -\frac{\sqrt{2}}{2}$
 $= -7$
 $y = 3 \sin 40^{\circ}$
 $= 1.93$
Cartesian coordinates are $(2.30, 1.93)$.

(f)
$$x = 5 \cos(-50^{\circ})$$

 $= 3.21$
 $y = 5 \sin(-50^{\circ})$
 $= -3.83$
 Cartesian coordinates are (3.21, -3.83).
(g) $x = 4 \cos 170^{\circ}$
 $= -3.94$
 $y = 4 \sin 170^{\circ}$
 $= 0.69$

Cartesian coordinates are (-3.94, 0.69).

(h)
$$x = 10 \cos(-100^{\circ})$$

= -1.74
 $y = 10 \sin(-100^{\circ})$
= -9.85
Cartesian coordinates are (-1.74, -9.85).

Miscellaneous Exercise 9

1.
$$3^{x-1} = 5$$

 $\log 3^{x-1} = \log 5$
 $(x-1) \log 3 = \log 5$
 $x - 1 = \frac{\log 5}{\log 3}$
 $x = \frac{\log 5}{\log 3} + 1$
2. $3^x - 1 = 5$
 $3^x = 6$
 $\log 3^x = \log 6$
 $x \log 3 = \log 6$
 $x = \frac{\log 6}{\log 3}$
3. (a) $\log_x 64 = 3$
 $x^3 = 64$
 $x = \sqrt[3]{64}$
 $= 4$
(b) $\log_x 64 = 2$
 $x^2 = 64$
 $x = \sqrt{64}$
 $= 8$
(c) $\log_x 64 = 6$
 $x^6 = 64$
 $x = \sqrt[6]{64}$
 $= 2$
(d) $\log_{10} 100 = x$
 $x = 2$
(e) $\log 17 - \log 2 = \log x$
 $\log \frac{17}{2} = x$
 $x = \frac{17}{2}$

(f)
$$\log 17 + \log 2 = \log x$$

 $\log(17 \times 2) = \log x$
 $x = 34$
(g) $\log \sqrt{2} = x \log 2$
 $\log 2^{\frac{1}{2}} = x \log 2$
 $\frac{1}{2} \log 2 = x \log 2$
 $x = \frac{1}{2}$
(h) $3 \log 2 = \log x$
 $\log 2^3 = \log x$
 $x = 8$
4. (a) $f(-21) = 1 - \frac{1}{\sqrt{4 - (-21)}}$
 $= 1 - \frac{1}{\sqrt{25}}$
 $= 1 - \frac{1}{5}$
 $= \frac{4}{5}$
(b) $f(f(3)) = f\left(1 - \frac{1}{\sqrt{4 - (3)}}\right)$
 $= f\left(1 - \frac{1}{\sqrt{1}}\right)$
 $= f(1 - 1)$
 $= f(0)$
 $= 1 - \frac{1}{\sqrt{4}}$
 $= 1 - \frac{1}{2}$
 $= \frac{1}{2}$

(c) Domain: the square root may not be nega-

tive so

$$\begin{array}{l} 4-x \ge 0\\ x \le 4 \end{array}$$

In addition, the denominator of the fraction may not be zero so

$$\sqrt{4 - x} \neq 0$$
$$4 - x \neq 0$$
$$x \neq 4$$

Combining these we obtain a domain $\{x \in \mathbb{R} : x < 4\}$

- (d) Range: the fraction can not be zero, neither can it be negative (since both numerator and denominator are positive), so y < 1and the range is $\{y \in \mathbb{R} : y < 1\}$
- (e) Domain and range of $f^{-1}(x)$ are the range and domain respectively of f(x). Domain: $\{x \in \mathbb{R} : x < 1\}$; Range: $\{y \in \mathbb{R} : y < 4\}$

$$y = 1 - \frac{1}{\sqrt{4 - x}}$$
$$\frac{1}{\sqrt{4 - x}} = 1 - y$$
$$\sqrt{4 - x} = \frac{1}{1 - y}$$
$$4 - x = \left(\frac{1}{1 - y}\right)^2$$
$$x = 4 - \left(\frac{1}{1 - y}\right)^2$$
$$= 4 - \frac{1}{(1 - y)^2}$$
$$f^{-1}(x) = 4 - \frac{1}{(1 - x)^2}$$

Now test one of the three intervals delimited by these two solutions.

• x < -2Try a value, say -3: Is it true that $|(-3) + 6| \le |2(-3)|$? Yes $(3 \le 6)$.

Solution set is

$$\{x\in\mathbb{R}:x\leq-2\}\cup\{x\in\mathbb{R}:x\geq6\}$$

$$3^{2} = x^{2} + 2^{2} - 2x \times 2\cos 24^{\circ}$$
$$x^{2} - (4\cos 24^{\circ})x + 4 = 9$$
$$x = 4.715 \text{km}$$

(ignoring the negative root.)

The road route is 2 + 3 - 4.715 = 0.285km (or about 300m) longer than the straight line distance.

An alternative to solving this algebraically would be to use the geometry app in the ClassPad to construct a scale diagram.

x = -2

Next consider $\triangle CBD$ to determine the length CB: D

Finally consider $\triangle ABC$ to determine the length and direction of AC:

C is 226m from A on a bearing of 060° .

9.
(a)
$$\cos(\pi - \theta) = \frac{80 - 60}{60}$$

 $\pi - \theta = \cos^{-1} \frac{20}{60}$
 $= 1.23$
 $\theta = \pi - 1.23$
 $= 1.91$
(b) $l = r\theta = 60 \times 1.91 \approx 115$ cm

10.
$$\mathbf{f} \circ \mathbf{g}(x) = \mathbf{f}(2x - 1)$$
 $\mathbf{g} \circ \mathbf{f}(x) = \mathbf{g}\left(\frac{3}{x}\right)$
 $= \frac{3}{2x - 1}$ $= 2(\frac{3}{x}) - 1$
 $= \frac{6}{x} - 1$

 $f \circ g(x)$ has domain determined by $2x - 1 \neq 0$ so the domain is $\{x \in \mathbb{R} : x \neq 0.5\}$ The range of $f \circ g(x)$ is $\{y \in \mathbb{R} : y \neq 0\}$.

 $\begin{array}{l} \mathrm{g}\circ\mathrm{f}(x) \text{ has domain } \{x\in\mathbb{R}:x\neq0\}.\\ \mathrm{The \ range \ of \ g}\circ\mathrm{f}(x) \text{ is determined \ by } \frac{6}{x}\neq0 \text{ so}\\ \frac{6}{x}-1\neq-1 \text{ and the \ range \ is } \{y\in\mathbb{R}:y\neq-1\}. \end{array}$

11. Let the original quantity be q. The amount remaining after t years is $q(0.95)^t$.

$$q(0.95)^{t} = 0.2q$$

$$0.95^{t} = 0.2$$

$$\log(0.95)^{t} = \log 0.2$$

$$t \log 0.95 = \log 0.2$$

$$t = \frac{\log 0.2}{\log 0.95}$$

$$= 31.4$$

The company can expect the field to remain profitable for 31 years. It will become unprofitable part-way through the 32nd year.

12. (a)
$$\log_c 5 = \log_c \frac{10}{2}$$

 $= \log_c 10 - \log_c 2$
 $= q - p$
(b) $\log_c 40 = \log_c (2^2 \times 10)$
 $= 2\log_c 2 + \log_c 10$
 $= 2p + q$
(c) $\log_c 200 = \log_c (2 \times 10^2)$
 $= \log_c 2 + 2\log_c 10$
 $= p + 2q$

(d) $\log_{c}(8c) = \log_{c}(2^{3} \times c)$ $= 3 \log_c 2 + \log_c c$ = 3p + 1 $2^{(\log_2 10)} = 10$ (e) $loq_c 2^{(\log_2 10)} = \log_c 10$ $\log_2 10 \log_c 2 = \log_c 10$ $\log_2 10 = \frac{\log_c 10}{\log_c 2}$ $10^{(\log 2)} = 2$ (f) $log_c 10^{(\log 2)} = \log_c 2$ $\log 2 \log_c 10 = \log_c 2$ $\log 2 = \frac{\log_c 2}{\log_c 10}$ $=\frac{p}{a}$ 13. (a) $_{\mathrm{C}}\mathbf{r}_{\mathrm{A}} = _{\mathrm{C}}\mathbf{r}_{\mathrm{B}} + _{\mathrm{B}}\mathbf{r}_{\mathrm{A}}$ $= (6\mathbf{i} - \mathbf{j}) + (4\mathbf{i} + 5\mathbf{j})$ = 10i + 4j $AC = \sqrt{10^2 + 4^2}$ $=\sqrt{116}$ $= 2\sqrt{29}$ (b) $\mathbf{r}_{\mathrm{C}} = {}_{\mathrm{C}}\mathbf{r}_{\mathrm{A}} + \mathbf{r}_{\mathrm{A}}$ $= (10\mathbf{i} + 4\mathbf{j}) + (-4\mathbf{i} + 6\mathbf{j})$ = 6i + 10j(c) $\mathbf{r}_{A} + 0.5 \overrightarrow{AC} = (-4\mathbf{i} + 6\mathbf{j}) + 0.5(10\mathbf{i} + 4\mathbf{j})$ $= (-4\mathbf{i} + 6\mathbf{j}) + (5\mathbf{i} + 2\mathbf{j})$ = i + 8i

- 14. (a) Points P₁ and P₂ lie on the y-axis, so x = 0for both. For P₁, y = |x - a| = |0 - a| = aso the coordinates of P₁ are (0, a). For P₂, y = |0.5x - b| = |0.5(0) - b| = b so the coordinates of P₂ are (0, b).
 - (b) Since P_1 is above P_2 we can conclude a > b.
 - (c) For P₄, |x a| = 0 so x = a and the coordinates are (a, 0). For P₆, |0.5x - b| = 0 so x = 2b and the coordinates are (2b, 0).
 - (d) At P_3 ,

$$-(x-a) = -(0.5x - b)$$
$$x - a = 0.5x - b$$
$$0.5x = a - b$$
$$x = 2a - 2b$$
$$y = -(x - a)$$
$$= -(2a - 2b - a)$$
$$= -(a - 2b)$$
$$= 2b - a$$

so the coordinates of \mathbf{P}_3 are (2a-2b,2b-a) At \mathbf{P}_5 ,

$$x - a = -(0.5x - b)$$

$$x - a = -0.5x + b$$

$$1.5x = a + b$$

$$x = \frac{2a + 2b}{3}$$

$$y = x - a$$

$$= \frac{2a + 2b}{3} - a$$

$$= \frac{2a + 2b - 3a}{3}$$

$$= \frac{2b - a}{3}$$

so the coordinates of P₅ are $\left(\frac{2a+2b}{3}, \frac{2b-a}{3}\right)$

