Chapter 7

Exercise 7A

1. (a) $\mathbf{r}_{\mathrm{A}}=2 \mathbf{i}+3 \mathbf{j}$
(b) $\mathbf{r}_{\mathrm{B}}=4 \mathbf{i}+5 \mathbf{j}$
(c) $\mathbf{r}_{\mathrm{C}}=\mathbf{i}+4 \mathbf{j}$
(d) ${ }_{\mathrm{A}} \mathbf{r}_{\mathrm{B}}=\mathbf{r}_{\mathrm{A}}-\mathbf{r}_{\mathrm{B}}=-2 \mathbf{i}-2 \mathbf{j}$
(e) ${ }_{\mathrm{A}} \mathbf{r}_{\mathrm{C}}=\mathbf{r}_{\mathrm{A}}-\mathbf{r}_{\mathrm{C}}=\mathbf{i}-\mathbf{j}$
(f) ${ }_{A} \mathbf{r}_{\mathrm{D}}=\mathbf{r}_{\mathrm{A}}-\mathbf{r}_{\mathrm{D}}=-2 \mathbf{i}+2 \mathbf{j}$
(g) ${ }_{\mathrm{D}} \mathbf{r}_{\mathrm{A}}=\mathbf{r}_{\mathrm{D}}-\mathbf{r}_{\mathrm{A}}=2 \mathbf{i}-2 \mathbf{j}$
(h) ${ }_{B} \mathbf{r}_{\mathrm{C}}=\mathbf{r}_{\mathrm{B}}-\mathbf{r}_{\mathrm{C}}=3 \mathbf{i}+\mathbf{j}$
(i) ${ }_{C} \mathbf{r}_{\mathrm{D}}=\mathbf{r}_{\mathrm{C}}-\mathbf{r}_{\mathrm{D}}=-3 \mathbf{i}+3 \mathbf{j}$
(j) ${ }_{D} \mathbf{r}_{C}=\mathbf{r}_{\mathrm{D}}-\mathbf{r}_{\mathrm{C}}=3 \mathbf{i}-3 \mathbf{j}$
2. (a) \mathbf{r}_{A} is given
(b) \mathbf{r}_{B} is given
(c) ${ }_{\mathrm{C}} \mathbf{r}_{\mathrm{A}}=\mathbf{r}_{\mathrm{C}}-\mathbf{r}_{\mathrm{A}}$ so
$\mathbf{r}_{\mathrm{C}}={ }_{\mathrm{C}} \mathbf{r}_{\mathrm{A}}+\mathbf{r}_{\mathrm{A}}=2 \mathbf{i}+\mathbf{j}$
(d) $\mathbf{r}_{\mathrm{D}}={ }_{\mathrm{D}} \mathbf{r}_{\mathrm{A}}+\mathbf{r}_{\mathrm{A}}=\mathbf{i}+3 \mathbf{j}$
(e) \mathbf{r}_{E} is given
(f) $\mathbf{r}_{\mathrm{F}}={ }_{\mathrm{F}} \mathbf{r}_{\mathrm{E}}+\mathbf{r}_{\mathrm{E}}=-\mathbf{i}+5 \mathbf{j}$
(g) $\mathbf{r}_{\mathrm{G}}={ }_{\mathrm{G}} \mathbf{r}_{\mathrm{D}}+\mathbf{r}_{\mathrm{D}}=-3 \mathbf{i}+2 \mathbf{j}$
(h) $\mathbf{r}_{\mathrm{H}}={ }_{\mathrm{H}} \mathbf{r}_{\mathrm{G}}+\mathbf{r}_{\mathrm{G}}=-2 \mathbf{i}+\mathbf{j}$
(i) $\mathbf{r}_{\mathrm{I}}={ }_{\mathrm{I}} \mathbf{r}_{\mathrm{A}}+\mathbf{r}_{\mathrm{A}}=5 \mathbf{i}+5 \mathbf{j}$
(j) ${ }_{\mathrm{I}} \mathbf{r}_{\mathrm{J}}=\mathbf{r}_{\mathrm{I}}-\mathbf{r}_{\mathrm{J}}$ so
$\mathbf{r}_{\mathrm{J}}=\mathbf{r}_{\mathrm{I}}-{ }_{\mathrm{I}} \mathbf{r}_{\mathrm{J}}=5 \mathbf{i}+2 \mathbf{j}$
(k) $\mathbf{r}_{\mathrm{K}}=\mathbf{r}_{\mathrm{H}}-{ }_{\mathrm{H}} \mathbf{r}_{\mathrm{K}}=3 \mathbf{i}$
(l) $\mathbf{r}_{\mathrm{L}}=\mathbf{r}_{\mathrm{I}}-{ }_{\mathrm{I}} \mathbf{r}_{\mathrm{L}}=4 \mathbf{j}$
3. $\mathbf{r}_{\mathrm{A}}=7 \mathbf{i}+11 \mathbf{j}$
${ }_{\mathrm{B}} \mathbf{r}_{\mathrm{A}}=-12 \mathbf{i}-8 \mathbf{j}$
$\mathbf{r}_{\mathrm{B}}=\mathbf{r}_{\mathrm{A}}+{ }_{\mathrm{B}} \mathbf{r}_{\mathrm{A}}=(-5 \mathbf{i}+3 \mathbf{j}) \mathrm{km}$.
4. $\overrightarrow{\mathrm{AB}}$ represents the displacement from A to B , thus it is the displacement of B relative to A.
Note the importance of understanding this result:

$$
\overrightarrow{\mathrm{AB}}={ }_{\mathrm{B}} \mathbf{r}_{\mathrm{A}}
$$

Some of you will get this the wrong way around if you are not careful!
5. $\mathbf{r}_{\mathrm{A}}=11 \mathbf{i}-3 \mathbf{j}$
${ }_{A} \mathbf{r}_{\mathrm{B}}=-8 \mathbf{i}-8 \mathbf{j}$
$\mathbf{r}_{\mathrm{B}}=\mathbf{r}_{\mathrm{A}}-{ }_{\mathrm{A}} \mathbf{r}_{\mathrm{B}}=19 \mathbf{i}+5 \mathbf{j}$
$\left|\mathbf{r}_{\mathrm{B}}\right|=\sqrt{19^{2}+5^{2}}=\sqrt{386} \mathrm{~km}$.
6. $\mathbf{r}_{\mathrm{A}}=5 \mathbf{i}+2 \mathbf{j}$
${ }_{\mathrm{A}} \mathbf{r}_{\mathrm{B}}=8 \mathbf{i}+3 \mathbf{j}$
$\mathbf{r}_{\mathrm{B}}=\mathbf{r}_{\mathrm{A}}-{ }_{\mathrm{A}} \mathbf{r}_{\mathrm{B}}=-3 \mathbf{i}-\mathbf{j}$
$\left|\mathbf{r}_{\mathrm{B}}\right|=\sqrt{3^{2}+1^{2}}=\sqrt{10} \mathrm{~km}$.
7. $\mathbf{r}_{\mathrm{A}}=2 \mathbf{i}+4 \mathbf{j}$
${ }_{C} \mathbf{r}_{\mathrm{A}}=-4 \mathbf{i}-\mathbf{j}$
$\mathbf{r}_{\mathrm{C}}=\mathbf{r}_{\mathrm{A}}+{ }_{\mathrm{C}} \mathbf{r}_{\mathrm{A}}=-2 \mathbf{i}+3 \mathbf{j}$
$\mathbf{r}_{\mathrm{B}}=\mathbf{r}_{\mathrm{C}}+{ }_{\mathrm{B}} \mathbf{r}_{\mathrm{C}}=5 \mathbf{i}-\mathbf{j}$
8. LHS:

$$
\begin{aligned}
{ }_{\mathrm{D}} \mathbf{r}_{\mathrm{E}}+{ }_{\mathrm{E}} \mathbf{r}_{\mathrm{F}} & =\left(\mathbf{r}_{\mathrm{D}}-\mathbf{r}_{\mathrm{E}}\right)+\left(\mathbf{r}_{\mathrm{E}}-\mathbf{r}_{\mathrm{F}}\right) \\
& =\mathbf{r}_{\mathrm{D}}-\mathbf{r}_{\mathrm{E}}+\mathbf{r}_{\mathrm{E}}-\mathbf{r}_{\mathrm{F}} \\
& =\mathbf{r}_{\mathrm{D}}-\mathbf{r}_{\mathrm{F}} \\
& ={ }_{\mathrm{D}} \mathbf{r}_{\mathrm{F}} \\
& =\text { RHS. Q.E.D. }
\end{aligned}
$$

By the cosine rule,

$$
\begin{aligned}
\left|{ }_{\mathrm{A}} \mathbf{v}_{\mathrm{B}}\right|^{2} & =20^{2}+40^{2}-2 \times 20 \times 40 \cos 60^{\circ} \\
\left|\mathrm{A}_{\mathrm{A}} \mathbf{v}_{\mathrm{B}}\right| & =20 \sqrt{3} \\
& \approx 36.64 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

By the sine rule,

$$
\begin{aligned}
\frac{\sin \left(\theta+30^{\circ}\right)}{40} & =\frac{\sin 60^{\circ}}{20 \sqrt{3}} \\
\sin \left(\theta+30^{\circ}\right) & =\frac{40 \times \frac{\sqrt{3}}{2}}{20 \sqrt{3}} \\
& =1 \\
\therefore \theta+30^{\circ} & =90^{\circ} \\
\theta & =60^{\circ}
\end{aligned}
$$

${ }_{\mathrm{A}} \mathbf{v}_{\mathrm{B}}=36.64 \mathrm{~km} / \mathrm{h}$ on a bearing of 060°.
6. $\mathrm{A}_{\mathrm{B}} \mathbf{v}_{\mathrm{B}}=\mathbf{v}_{\mathrm{A}}+\left(-\mathbf{v}_{\mathrm{B}}\right)$

By Pythagoras,

$$
\begin{aligned}
&\left.\left|\mathrm{A}^{\mathbf{v}}\right|_{\mathrm{B}}\right|^{2}=6^{2}+8^{2} \\
&\left|\mathrm{~A}_{\mathrm{A}} \mathbf{v}_{\mathrm{B}}\right|=10 \mathrm{~km} / \mathrm{h} \\
& \tan \left(90^{\circ}-\theta\right)=\frac{8}{6} \\
& 90^{\circ}-\theta \approx 53.13^{\circ} \\
& \theta \approx 36.87^{\circ}
\end{aligned}
$$

${ }_{A} \mathbf{v}_{\mathrm{B}}=10 \mathrm{~km} / \mathrm{h}$ on a bearing of 037°.
7. $\mathrm{A}_{\mathrm{A}} \mathbf{v}_{\mathrm{B}}=\mathbf{v}_{\mathrm{A}}+\left(-\mathbf{v}_{\mathrm{B}}\right)$

$$
\begin{aligned}
60+(80+\alpha) & =180 \text { (cointerior angles) } \\
\alpha & =40^{\circ}
\end{aligned}
$$

By the cosine rule,

$$
\begin{aligned}
\mid \mathrm{A}_{\mathrm{A}} \mathbf{v}^{2} & =24^{2}+15^{2}-2 \times 24 \times 15 \cos 40^{\circ} \\
\left|{ }_{\mathrm{A}} \mathbf{v}_{\mathrm{B}}\right| & \approx 15.79 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

By the cosine rule again (since the sine rule would be ambiguous here),

$$
\begin{aligned}
\theta+60 & =\cos ^{-1} \frac{15^{2}+15.79^{2}-24^{2}}{2 \times 15 \times 15.79} \\
& =102.38^{\circ} \\
\theta & =42.38^{\circ}
\end{aligned}
$$

${ }_{\mathrm{A}} \mathbf{v}_{\mathrm{B}}=15.8 \mathrm{~km} / \mathrm{h}$ on a bearing of 318°.
8. $\mathrm{A}_{\mathrm{B}} \mathbf{v}_{\mathrm{B}}=\mathbf{v}_{\mathrm{A}}+\left(-\mathbf{v}_{\mathrm{B}}\right)$

$$
\begin{aligned}
\alpha & =180-120 \text { (cointerior angles) } \\
& =60^{\circ} \\
\alpha+45 & =105^{\circ}
\end{aligned}
$$

By the cosine rule,

$$
\begin{aligned}
\left|\mathrm{A}_{\mathrm{B}}\right|^{2} & =21^{2}+15^{2}-2 \times 21 \times 15 \cos 105^{\circ} \\
\left|\mathrm{A}_{\mathrm{A}} \mathbf{v}_{\mathrm{B}}\right| & =28.79 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

By the sine rule (unambiguous here),

$$
\begin{aligned}
\frac{\sin \left(120^{\circ}-\theta\right)}{21} & =\frac{\sin 105^{\circ}}{28.79} \\
120^{\circ}-\theta & =\sin ^{-1} \frac{21 \sin 105^{\circ}}{28.79} \\
& =44.79^{\circ} \\
\theta & =120-44.79 \\
& =75.21^{\circ}
\end{aligned}
$$

$\mathrm{A} \mathbf{v}_{\mathrm{B}}=28.8 \mathrm{~km} / \mathrm{h}$ on a bearing of 075°.
9. $\mathrm{A} \mathbf{v}_{\mathrm{B}}=11.8 \mathrm{~km} / \mathrm{h}$ on a bearing of 343°.

10. ${ }_{\mathrm{A}} \mathbf{v}_{\mathrm{B}}=17.3 \mathrm{~km} / \mathrm{h}$ on a bearing of 308°.

11. $\mathbf{v}_{\mathrm{A}}=7 \mathbf{i}-10 \mathbf{j}$
$\mathbf{v}_{\mathrm{B}}=2 \mathbf{j}+20 \mathbf{j}$
(a) ${ }_{\mathrm{A}} \mathbf{v}_{\mathrm{B}}=\mathbf{v}_{\mathrm{A}}-\mathbf{v}_{\mathrm{B}}=5 \mathbf{i}-30 \mathbf{j} \mathrm{~km} / \mathrm{h}$
(b) ${ }_{\mathrm{B}} \mathbf{v}_{\mathrm{A}}=\mathbf{v}_{\mathrm{B}}-\mathbf{v}_{\mathrm{A}}=-5 \mathbf{i}+30 \mathbf{j} \mathrm{~km} / \mathrm{h}$
12. (a) ${ }_{\mathrm{A}} \mathbf{v}_{\mathrm{B}}=\mathbf{v}_{\mathrm{A}}+\left(-\mathbf{v}_{\mathrm{B}}\right)$

$$
\begin{aligned}
\alpha & =360-90-120 \\
& =150^{\circ}
\end{aligned}
$$

By the cosine rule,

$$
\begin{aligned}
\left|{ }_{\mathrm{A}} \mathbf{v}_{\mathrm{B}}\right|^{2} & =12^{2}+15^{2}-2 \times 12 \times 15 \cos 150^{\circ} \\
\left|\mathrm{A}_{\mathrm{A}} \mathbf{v}_{\mathrm{B}}\right| & =26.09 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

By the sine rule (unambiguous here),

$$
\begin{aligned}
\frac{\sin (\theta-90)}{15} & =\frac{\sin 150^{\circ}}{26.09} \\
\theta-90 & =\sin ^{-1} \frac{15 \sin 150^{\circ}}{26.09} \\
& =16.71^{\circ} \\
\theta & =106.71^{\circ}
\end{aligned}
$$

${ }_{\mathrm{A}} \mathbf{v}_{\mathrm{B}}=26.1 \mathrm{~km} / \mathrm{h}$ on a bearing of 253°.
(b) ${ }_{\mathrm{B}} \mathbf{v}_{\mathrm{A}}=\mathbf{v}_{\mathrm{B}}+\left(-\mathbf{v}_{\mathrm{A}}\right)=-{ }_{\mathrm{A}} \mathbf{v}_{\mathrm{B}}$
(Same diagram with all the arrows reversed.)
${ }_{\mathrm{B}} \mathbf{v}_{\mathrm{A}}=26.1 \mathrm{~km} / \mathrm{h}$ on a bearing of 073°.
13. $\mathrm{mc}_{\mathrm{c}} \mathbf{v}_{\mathrm{car}}=\mathbf{v}_{\mathrm{mc}}+\left(-\mathbf{v}_{\mathrm{car}}\right)$

By the cosine rule,

$$
\begin{aligned}
\left|\mathrm{mc}_{\mathrm{car}}\right|^{2} & =100^{2}+80^{2}-2 \times 100 \times 80 \cos 150^{\circ} \\
\left|\mathrm{mc} \mathbf{v}_{\mathrm{car}}\right| & =173.94 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

By the sine rule (unambiguous here),

$$
\begin{aligned}
\frac{\sin (90-\theta)}{100} & =\frac{\sin 150^{\circ}}{173.94} \\
90-\theta & =\sin ^{-1} \frac{100 \sin 150^{\circ}}{173.94} \\
& =16.91^{\circ} \\
\theta & =73.29^{\circ}
\end{aligned}
$$

${ }_{\mathrm{mc}} \mathbf{V}_{\mathrm{car}}=174 \mathrm{~km} / \mathrm{h}$ on a bearing of 287°.
14. ${ }_{\mathrm{A}} \mathbf{v}_{\mathrm{B}}=\mathbf{v}_{\mathrm{A}}-\mathbf{v}_{\mathrm{B}}$
$\mathbf{v}_{\mathrm{B}}=\mathbf{v}_{\mathrm{A}}-{ }_{\mathrm{A}} \mathbf{v}_{\mathrm{B}}=\mathbf{i}-12 \mathbf{j}$
15. $\mathrm{B}_{\mathrm{B}}=\mathbf{v}_{\mathrm{B}}-\mathbf{v}_{\mathrm{A}}$
$\mathbf{v}_{\mathrm{B}}=\mathbf{v}_{\mathrm{A}}+{ }_{\mathrm{B}} \mathbf{v}_{\mathrm{A}}=-2 \mathbf{i}+6 \mathbf{j}$
16. LHS:

$$
\begin{aligned}
\mathrm{A}_{\mathrm{B}}+{ }_{\mathrm{B}} \mathbf{v}_{\mathrm{C}} & =\left(\mathbf{v}_{\mathrm{A}}-\mathbf{v}_{\mathrm{B}}\right)+\left(\mathbf{v}_{\mathrm{B}}-\mathbf{v}_{\mathrm{C}}\right) \\
& =\mathbf{v}_{\mathrm{A}}-\mathbf{v}_{\mathrm{B}}+\mathbf{v}_{\mathrm{B}}-\mathbf{v}_{\mathrm{C}} \\
& =\mathbf{v}_{\mathrm{A}}-\mathbf{v}_{\mathrm{C}} \\
& ={ }_{\mathrm{A}} \mathbf{r}_{\mathrm{C}} \\
& =\text { RHS. Q.E.D. }
\end{aligned}
$$

17. $\mathrm{A}_{\mathrm{A}} \mathbf{v}_{\mathrm{B}}=\mathbf{v}_{\mathrm{A}}-\mathbf{v}_{\mathrm{B}}$

$$
\begin{aligned}
\mathbf{v}_{\mathrm{B}} & =\mathbf{v}_{\mathrm{A}}-\mathrm{A}_{\mathrm{A}} \mathbf{v}_{\mathrm{B}} \\
& =20-30 \\
& =-10 \mathrm{~km} / \mathrm{h} \text { due North } \\
& =10 \mathrm{~km} / \mathrm{h} \text { due South }
\end{aligned}
$$

18. ${ }_{A} \mathbf{v}_{\mathrm{B}}=\mathbf{v}_{\mathrm{A}}-\mathbf{v}_{\mathrm{B}}$

$$
\begin{aligned}
\mathbf{v}_{\mathrm{B}} & =\mathbf{v}_{\mathrm{A}}-\mathrm{A}_{\mathbf{~}} \mathbf{v}_{\mathrm{B}} \\
& =80-60 \\
& =20 \mathrm{~km} / \mathrm{h} \text { due South }
\end{aligned}
$$

19.

By the cosine rule,

$$
\begin{aligned}
& \left|\mathbf{v}_{\mathrm{B}}\right|^{2}=70^{2}+100^{2}-2 \times 70 \times 100 \cos 140^{\circ} \\
& \left|\mathrm{A}_{\mathrm{A}} \mathbf{v}_{\mathrm{B}}\right|=160.08 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

By the sine rule (unambiguous here),

$$
\begin{aligned}
\frac{\sin \left(100^{\circ}-\theta\right)}{100} & =\frac{\sin 140^{\circ}}{160.08} \\
100^{\circ}-\theta & =\sin ^{-1} \frac{100 \sin 140^{\circ}}{160.08} \\
& =23.68^{\circ} \\
\theta & =100-23.68 \\
& =76.32^{\circ}
\end{aligned}
$$

$\mathbf{v}_{\mathrm{B}}=160 \mathrm{~km} / \mathrm{h}$ on a bearing of 076°.
20. $\mathbf{v}_{\text {wind }}={ }_{\text {wind }} \mathbf{v}_{\text {ship }}+\mathbf{v}_{\text {ship }}=(13 \mathbf{i}+\mathbf{j}) \mathrm{km} / \mathrm{h}$
21. $\mathbf{v}_{\text {wind }}={ }_{\text {wind }} \mathbf{v}_{\text {walker }}+\mathbf{v}_{\text {walker }}=(4 \mathbf{i}-2 \mathbf{j}) \mathrm{km} / \mathrm{h}$
22.

By the cosine rule,

$$
\begin{aligned}
\left|\mathbf{v}_{\text {wind }}\right|^{2} & =25^{2}+15^{2}-2 \times 25 \times 15 \cos 45^{\circ} \\
\left|\mathbf{v}_{\text {wind }}\right| & =17.88 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

By the sine rule (unambiguous here),

$$
\begin{aligned}
\frac{\sin \left(135^{\circ}-\theta\right)}{15} & =\frac{\sin 45^{\circ}}{17.88} \\
135^{\circ}-\theta & =\sin ^{-1} \frac{15 \sin 45^{\circ}}{17.88} \\
& =36.39^{\circ} \\
\theta & =135-36.39 \\
& =98.61^{\circ}
\end{aligned}
$$

$\mathbf{v}_{\text {wind }}=17.9 \mathrm{~km} / \mathrm{h}$ on a bearing of 099°. However, it is usual to give the direction a wind blows from so:
$\mathbf{v}_{\text {wind }}=17.9 \mathrm{~km} / \mathrm{h}$ blowing from 279°.
23.

By Pythagoras' Theorem,

$$
\begin{aligned}
\left|\mathbf{v}_{\text {wind }}\right|^{2} & =5^{2}+3^{2} \\
\left|\mathbf{v}_{\text {wind }}\right| & =\sqrt{34} \mathrm{~km} / \mathrm{h} \\
& \approx 5.83 \mathrm{~km} / \mathrm{h} \\
\tan \theta & =\frac{3}{5} \\
\theta & =30.96^{\circ}
\end{aligned}
$$

$\mathbf{v}_{\text {wind }}=5.8 \mathrm{~km} / \mathrm{h}$ on a bearing of 031°. However, it is usual to give the direction a wind blows from so:
$\mathbf{v}_{\text {wind }}=5.8 \mathrm{~km} / \mathrm{h}$ blowing from 211°.
24. - B appears stationary, so $\mathbf{v}_{\mathrm{B}}=\mathbf{v}_{\mathrm{A}}$ and B is travelling due north at $10 \mathrm{~km} / \mathrm{h}$.

- C appears to be moving south at $3 \mathrm{~km} / \mathrm{h}$. This means that C is actually moving north $3 \mathrm{~km} / \mathrm{h}$ slower than A . C is travelling due north at $7 \mathrm{~km} / \mathrm{h}$.
- D appears to be moving north at $5 \mathrm{~km} / \mathrm{h}$. It is actually travelling north $5 \mathrm{~km} / \mathrm{h}$ faster than A. D is travelling due north at $15 \mathrm{~km} / \mathrm{h}$.

25. $\mathbf{v}_{\text {wind }}=\overline{\mathbf{v}}_{\text {wind }}$ wind $\mathbf{v}_{\text {bird }}+\mathbf{v}_{\text {bird }}$

By the cosine rule,

$$
\begin{aligned}
\left|\mathbf{v}_{\text {wind }}\right|^{2} & =14^{2}+22^{2}-2 \times 14 \times 22 \cos 20^{\circ} \\
\left|\mathbf{v}_{\text {wind }}\right| & =10.06 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Without drawing a scale diagram, we don't know whether the angle $160^{\circ}-\theta$ is acute or obtuse, so the sine rule is ambiguous here. We'll use the cosine rule instead.

$$
\begin{aligned}
160^{\circ}-\theta & =\cos ^{-1} \frac{14^{2}+10.06^{2}-22^{2}}{2 \times 14 \times 10.06} \\
& =131.57^{\circ} \\
\theta & =28.43^{\circ}
\end{aligned}
$$

$\mathbf{v}_{\text {wind }}=10.1 \mathrm{~km} / \mathrm{h}$ from 208°.
26. - Ship F appears to be moving at the same speed as ship E but in the opposite direction $\left(220^{\circ}-20^{\circ}=180^{\circ}\right)$. This implies that ship F is actually stationary.

- $\mathbf{v}_{\mathrm{G}}={ }_{\mathrm{G}} \mathbf{v}_{\mathrm{E}}+\mathbf{v}_{\mathrm{E}}$

$$
\begin{aligned}
& \frac{\sin (\theta)}{15}=\frac{\sin 140^{\circ}}{19.10} \\
& \theta=\sin ^{-1} \frac{15 \sin 140^{\circ}}{19.10} \\
& =30.31^{\circ}
\end{aligned}
$$

$\mathbf{v}_{\mathrm{G}}=19.1 \mathrm{~km} / \mathrm{h}$ on a bearing of 030°.

$$
\begin{aligned}
& \text { - } \mathbf{v}_{\mathrm{H}}={ }_{\mathrm{H}} \mathbf{v}_{\mathrm{E}}+\mathbf{v}_{\mathrm{E}} \\
& 40+\alpha=180-60 \text { (cointerior angles) } \\
& \alpha=80^{\circ} \\
& \begin{aligned}
\left|\mathbf{v}_{\mathrm{H}}\right|^{2} & =30^{2}+15^{2}-2 \times 30 \times 15 \cos 80^{\circ} \\
\left|\mathbf{v}_{\mathrm{H}}\right| & =31.12 \mathrm{~km} / \mathrm{h}
\end{aligned} \\
& \frac{\sin \left(60^{\circ}-\theta\right)}{15}=\frac{\sin 80^{\circ}}{31.12} \\
& 60-\theta=\sin ^{-1} \frac{15 \sin 80^{\circ}}{31.12} \\
& =28.33^{\circ} \\
& \theta=60-28.33 \\
& =31.67^{\circ}
\end{aligned}
$$

$\mathbf{v}_{\mathrm{H}}=31.1 \mathrm{~km} / \mathrm{h}$ on a bearing of 328°.
27. ${ }_{\mathrm{A}} \mathbf{v}_{\mathrm{B}}=7 \mathbf{i}-10 \mathbf{j}$
${ }_{\mathrm{A}} \mathbf{v}_{\mathrm{C}}=13 \mathbf{i}-2 \mathbf{j}$
${ }_{\mathrm{B}} \mathbf{v}_{\mathrm{C}}=\mathbf{v}_{\mathrm{B}}-\mathbf{v}_{\mathrm{C}}$
$=\mathbf{v}_{\mathrm{B}}-\mathbf{v}_{\mathrm{C}}+\mathbf{v}_{\mathrm{A}}-\mathbf{v}_{\mathrm{A}}$
$=\mathbf{v}_{\mathrm{B}}-\mathbf{v}_{\mathrm{A}}+\mathbf{v}_{\mathrm{A}}-\mathbf{v}_{\mathrm{C}}$
$={ }_{B} \mathbf{v}_{\mathrm{A}}+{ }_{\mathrm{A}} \mathbf{v}_{\mathrm{C}}$ (we might have started here)
$=-(7 \mathbf{i}-10 \mathbf{j})+(13 \mathbf{i}-2 \mathbf{j})$
$=6 \mathbf{i}+8 \mathbf{j}$
28. On the same diagram, draw the vectors representing the speed and direction of the cyclist travelling east and travelling south. From the head of each of these vectors draw the line representing the apparent direction of the wind. Since

$$
\mathbf{v}_{\text {wind }}=\mathbf{v}_{\text {cyclist }}+{ }_{\text {wind }} \mathbf{v}_{\text {cyclist }}
$$

with its foot at the origin, the head of $\mathbf{v}_{\text {wind }}$ must lie along this line. Thus, the point where these two extended lines intersect must be where the head of $\mathbf{v}_{\text {wind }}$ lies.

The wind velocity is $14.8 \mathrm{~km} / \mathrm{h}$ from 333°.
29. Refer to comments introducing question 27. wind $\mathbf{V}_{\text {walker }}$

The wind velocity is $6.2 \mathrm{~km} / \mathrm{h}$ from 224°.

Miscellaneous Exercise 7

1. (a) $A C=\sqrt{(\mathrm{AB})^{2}+(\mathrm{BC})^{2}}$

$$
\begin{aligned}
& =\sqrt{162^{2}+94^{2}} \\
& =\sqrt{35080} \\
& =187.3 \mathrm{~mm}
\end{aligned}
$$

(b) $A E=\sqrt{(\mathrm{AF})^{2}+(\mathrm{EF})^{2}}$

$$
\begin{aligned}
& =\sqrt{\left(\frac{\mathrm{AC}}{2}\right)^{2}+(\mathrm{EF})^{2}} \\
& =\sqrt{\frac{35080}{4}+118^{2}} \\
& =\sqrt{22694} \\
& =150.6 \mathrm{~mm}
\end{aligned}
$$

(c) Let θ be the angle face ABE makes with the base ABCD.
Let point G be the midpoint of $A B$.

$$
\begin{aligned}
\tan \theta & =\frac{\mathrm{EF}}{\mathrm{FG}} \\
\angle \mathrm{EBF} & =\tan ^{-1} \frac{118}{94 / 2} \\
& =68.3^{\circ}
\end{aligned}
$$

2. (a) Area $=\frac{1}{2} r^{2} \theta=.5 \times 5^{2} \times 2=25 \mathrm{~cm}^{2}$
(b) Area $=\frac{1}{2} r^{2}(\theta-\sin \theta)=.5 \times 8^{2}(1.8-\sin 1.8)=$ $26.4 \mathrm{~cm}^{2}$
(c)

$$
\begin{aligned}
\sin \frac{\theta}{2} & =\frac{8}{10} \\
\theta & =2 \sin ^{-1} 0.8 \\
& =1.85
\end{aligned}
$$

For the major segment we want the reflex angle:

$$
\begin{gathered}
\alpha=2 \pi-\theta=4.43 \\
\text { Area }=\frac{1}{2} r^{2}(\alpha-\sin \alpha) \\
= \\
= \\
=269.4 \mathrm{~cm}^{2}(4.43-\sin 4.43)
\end{gathered}
$$

3. (a) For $x<3,|2 x-6|=-(2 x-6)$

$$
\begin{aligned}
-(2 x-6) & \leq x \\
-2 x+6 & \leq x \\
6 & \leq 3 x \\
2 & \leq x \\
x & \geq 2
\end{aligned}
$$

For $x \geq 3,|2 x-6|=2 x-6$

$$
\begin{aligned}
2 x-6 & \leq x \\
x-6 & \leq 0 \\
x & \leq 6
\end{aligned}
$$

Solution: $2 \leq x \leq 6$
(b) For $x<0,|x|=-x$

$$
\begin{aligned}
3-2 x & >-x \\
3 & >x \\
x & <3
\end{aligned}
$$

So the inequality is satisfied for all $x<0$.
For $x \geq 0,|x|=x$

$$
\begin{aligned}
3-2 x & >x \\
3 & >3 x \\
x & <1
\end{aligned}
$$

Solution: $x<1$
(c) For $x<-3,|x+3|=-(x+3)$

$$
\begin{aligned}
-(x+3) & <x+1 \\
-x-3 & <x+1 \\
-4 & <2 x \\
-2 & <x \\
x & >-2
\end{aligned}
$$

No solution for $x<-3$. For $x \geq-3$, $|x+3|=x+3$

$$
\begin{aligned}
x+3 & <x+1 \\
3 & <1
\end{aligned}
$$

No solution for $x \geq-3$.
No value of x satisfies the inequality.
(d) For $x>-1$ this problem is essentially the same as the previous one which has no solution, so we only need to consider $x \leq-1$ and the problem becomes

$$
|x+3| \leq-(x+1)
$$

For $x<-3,|x+3|=-(x+3)$

$$
\begin{aligned}
-(x+3) & \leq-(x+1) \\
-x-3 & \leq-x-1 \\
-3 & \leq-1
\end{aligned}
$$

The inequality is satisfied for all $x<-3$.
For $-3 \leq x \leq-1,|x+3|=x+3$

$$
\begin{aligned}
x+3 & \leq-(x+1) \\
x+3 & \leq-x-1 \\
2 x & \leq-4 \\
x & \leq-2
\end{aligned}
$$

Solution: $x \leq-2$
4. (a) $d=r \theta=\frac{2 \pi}{5} \times 1.8=2.26 \mathrm{~m}$
(b) $d=r \theta=\frac{2 \pi}{5} \times 1=1.26 \mathrm{~m}$
5.

$$
\begin{aligned}
\frac{d_{1}}{\sin 80^{\circ}} & =\frac{10}{\sin 30^{\circ}} \\
d_{1} & =\frac{10 \sin 80^{\circ}}{\sin 30^{\circ}} \\
& =19.7 \mathrm{~km}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d_{2}}{\sin 70^{\circ}} & =\frac{10}{\sin 30^{\circ}} \\
d_{2} & =\frac{10 \sin 70^{\circ}}{\sin 30^{\circ}} \\
& =18.8 \mathrm{~km}
\end{aligned}
$$

6.

$$
\begin{aligned}
\mathbf{a} & =k \mathbf{b} \\
2 \mathbf{i}+2 \mathbf{j} & =k(x \mathbf{i}+5 \mathbf{j}) \\
x & =5 \\
|\mathbf{b}| & =|\mathbf{c}| \\
|5 \mathbf{i}+5 \mathbf{j}| & =|7 \mathbf{i}+y \mathbf{j}| \\
\sqrt{5^{2}+5^{2}} & =\sqrt{7^{2}+y^{2}} \\
50 & =49+y^{2} \\
y & =1
\end{aligned}
$$

7. (a) $\overrightarrow{\mathrm{BC}}=-\mathbf{b}-\mathbf{a}+3 \mathbf{b}=2 \mathbf{b}-\mathbf{a}$
(b) $\overrightarrow{\mathrm{BD}}=\frac{1}{3} \overrightarrow{\mathrm{BC}}=\frac{2}{3} \mathbf{b}-\frac{1}{3} \mathbf{a}$
(c) $\overrightarrow{\mathrm{OD}}=\mathbf{a}+\mathbf{b}+\overrightarrow{\mathrm{BD}}$
$=\mathbf{a}+\mathbf{b}+\frac{2}{3} \mathbf{b}-\frac{1}{3} \mathbf{a}$
$=\frac{2}{3} \mathbf{a}+\frac{5}{3} \mathbf{b}$

$$
\begin{aligned}
\overrightarrow{\mathrm{OE}} & =\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BD}} \\
& =\mathbf{a}+\mathbf{b}+h \mathbf{b} \\
& =\mathbf{a}+(h+1) \mathbf{b} \\
\overrightarrow{\mathrm{OE}} & =\overrightarrow{\mathrm{OD}}+\overrightarrow{\mathrm{OE}} \\
& =(k+1) \overrightarrow{\mathrm{OD}} \\
& =(k+1)\left(\frac{2}{3} \mathbf{a}+\frac{5}{3} \mathbf{b}\right) \\
\therefore \quad \mathbf{a}+(h+1) \mathbf{b} & =(k+1)\left(\frac{2}{3} \mathbf{a}+\frac{5}{3} \mathbf{b}\right) \\
\mathbf{a}-\frac{2(k+1)}{3} \mathbf{a} & =\frac{5(k+1)}{3} \mathbf{b}-(h+1) \mathbf{b} \\
\left(1-\frac{2 k}{3}-\frac{2}{3}\right) \mathbf{a} & =\left(\frac{5 k}{3}+\frac{5}{3}-h-1\right) \mathbf{b}
\end{aligned}
$$

LHS: $\quad \frac{1}{3}-\frac{2 k}{3}=0$

$$
k=\frac{1}{2}
$$

RHS: $\quad \frac{5 k}{3}+\frac{2}{3}-h=0$

$$
\begin{aligned}
\frac{5}{6}+\frac{2}{3}-h & =0 \\
\frac{9}{6}-h & =0 \\
h & =\frac{3}{2}
\end{aligned}
$$

8. (a) $\log _{a} x+\log _{a} y=\log _{a} x y$ so $p=x y$
(b) $p=x^{y}$
(c) $3 \log _{a} x-\log _{a} y=\log _{a} p$

$$
\begin{aligned}
\log _{a} x^{3}-\log _{a} y & =\log _{a} p \\
\log _{a} \frac{x^{3}}{y} & =\log _{a} p \\
p & =\frac{x^{3}}{y}
\end{aligned}
$$

(d) $2+.5 \log _{10} y=\log _{10} p$
$\log _{10} 10^{2}+.5 \log _{10} y=\log _{10} p$
$\log _{10} 100+\log _{10} y^{0.5}=\log _{10} p$ $\log _{10} 100+\log _{10} \sqrt{y}=\log _{10} p$

$$
\begin{aligned}
\log _{10}(100 \sqrt{y}) & =\log _{10} p \\
p & =100 \sqrt{y}
\end{aligned}
$$

9. Let point P be the position of the object after 2 seconds.

$$
\begin{aligned}
{ }_{\mathrm{P}} \mathbf{r}_{\mathrm{B}} & =2(3 \mathbf{i}-2 \mathbf{j}) \\
& =6 \mathbf{i}-4 \mathbf{j} \\
{ }_{\mathrm{P}} \mathbf{r}_{\mathrm{A}} & ={ }_{\mathrm{P}} \mathbf{r}_{\mathrm{B}}+{ }_{\mathrm{B}} \mathbf{r}_{\mathrm{A}} \\
& =6 \mathbf{i}-4 \mathbf{j}+8 \mathbf{i}+3 \mathbf{j} \\
& =14 \mathbf{i}-\mathbf{j} \\
\mathbf{r}_{\mathrm{P}} & ={ }_{\mathrm{P}} \mathbf{r}_{\mathrm{A}}+\mathbf{r}_{\mathrm{A}} \\
& =14 \mathbf{i}-\mathbf{j}+-2 \mathbf{i}+7 \mathbf{j} \\
& =12 \mathbf{i}+6 \mathbf{j} \\
\left|\mathbf{r}_{\mathrm{P}}\right| & =|12 \mathbf{i}+6 \mathbf{j}| \\
& =6|2 \mathbf{i}+\mathbf{j}| \\
& =6 \sqrt{2^{2}+1^{2}} \\
& =6 \sqrt{5} \mathrm{~m} \text { from the origin. }
\end{aligned}
$$

Flying from A to B :

$$
\begin{aligned}
(300 t)^{2} & =(40 t)^{2}+600^{2}-2 \times 40 t \times 600 \cos 45^{\circ} \\
90000 t^{2} & =1600 t^{2}+360000-48000 t \times \frac{\sqrt{2}}{2} \\
225 t^{2} & =4 t^{2}+900-120 t \times \frac{\sqrt{2}}{2} \\
0 & =221 t^{2}+60 \sqrt{2} t-900 \\
t & =1.835 \text { hours } \\
t & =110 \text { minutes }
\end{aligned}
$$

Flying from B to A :

$$
\begin{aligned}
(300 t)^{2} & =(40 t)^{2}+600^{2}-2 \times 40 t \times 600 \cos 135^{\circ} \\
90000 t^{2} & =1600 t^{2}+360000+48000 t \times \frac{\sqrt{2}}{2} \\
225 t^{2} & =4 t^{2}+900+120 t \times \frac{\sqrt{2}}{2} \\
0 & =221 t^{2}-60 \sqrt{2} t-900 \\
t & =2.219 \text { hours } \\
t & =133 \text { minutes }
\end{aligned}
$$

