Chapter 3

Exercise 3A

1. (a)
$$\angle ABN = 180 - 50$$

 $= 130^{\circ}$
 $\angle ABC = 360 - 90 - 130$
 $= 140^{\circ}$
 $AC = \sqrt{5.8^2 + 6.4^2 - 2 \times 5.8 \times 6.4 \cos 140^{\circ}}$
 $= 11.5 \text{km}$
 $\frac{\sin \angle BAC}{6.4} = \frac{\sin 140^{\circ}}{11.5}$
 $\angle BAC = \sin^{-1} \frac{6.4 \sin 140^{\circ}}{11.5}$
 $= 21^{\circ}$
 $50 + 21 = 71^{\circ}$
 C is 11.5 km on a bearing of 071° from A.

(b) $71 + 180 = 251^{\circ}$ A has a bearing of 251° from C.

 $= 5.5 \mathrm{km}$

2. (a) Bearing of A from B is $300 - 180 = 120^{\circ}$. $\angle ABC = 120 - 70$ $= 50^{\circ}$ $AC = \sqrt{4.9^2 + 7.2^2 - 2 \times 4.9 \times 7.2 \cos 50^{\circ}}$

We'll initially find \angle BCA rather than \angle BAC because the sine rule is ambiguous for \angle BAC but \angle BCA can not be obtuse (because it is opposite a smaller side).

$$\frac{\sin \angle BCA}{4.9} = \frac{\sin 50^{\circ}}{5.5}$$
$$\angle BCA = \sin^{-1} \frac{4.9 \sin 50^{\circ}}{5.5}$$
$$= 43^{\circ}$$
$$\angle BAC = 180 - 50 - 43$$
$$= 87^{\circ}$$
$$300 + 87 = 387$$
$$387 - 360 = 027^{\circ}$$

C is 8.5km on a bearing of 027° from A.

- (b) $27 + 180 = 207^{\circ}$ A has a bearing of 207° from C.
- 3. (a) Bearing of A from B is $40 + 180 = 220^{\circ}$. Bearing of C from B is $360 - 100 = 260^{\circ}$. $\angle ABC = 260 - 220$ $= 40^{\circ}$

$$AC = \sqrt{73^2 + 51^2 - 2 \times 73 \times 51 \cos 40^{\circ}}$$

= 47km

We'll initially find \angle BCA rather than \angle BAC because the sine rule is ambiguous for \angle BAC but \angle BCA can not be obtuse (because it is opposite a smaller side).

$$\frac{\sin \angle BCA}{51} = \frac{\sin 40^{\circ}}{47}$$
$$\angle BCA = \sin^{-1} \frac{51 \sin 40^{\circ}}{47}$$
$$= 44^{\circ}$$
$$\angle BAC = 180 - 40 - 44$$
$$= 96^{\circ}$$
$$40 - 96 = -56$$
$$-56 + 360 = 304^{\circ}$$

C is 47km on a bearing of 304° from A.

(b)
$$304 - 180 = 124^{\circ}$$

A has a bearing of 124° from C.

(b) Bearing of A from C is $89 + 180 = 269^{\circ}$

(b) Bearing of A from C is $46 + 180 = 226^{\circ}$

Final position is 8.9km on a bearing of 145° from initial position.

We'll initially find \angle BCA rather than \angle BAC because the sine rule is ambiguous for \angle BAC but \angle BCA can not be obtuse (because it is opposite a smaller side).

$$\frac{\sin \angle BCA}{2.6} = \frac{\sin 48^{\circ}}{3.2}$$
$$\angle BCA = \sin^{-1} \frac{2.6 \sin 48^{\circ}}{3.2}$$
$$= 37^{\circ}$$
$$\angle BCA = 180 - 48 - 41$$
$$= 95^{\circ}$$

Final position is 3.2km on a bearing of 095° from initial position.

The bearing of the second checkpoint from the start is either: $(30-41)+360 = 349^{\circ}$ or $30+41 = 071^{\circ}$.

11. First, determine the bearing and distance from tee to pin. The angle at the bend is $180 - (50 - 20) = 150^{\circ}$. Call the bend point B and tee and pin T and P respectively.

$$\Gamma P = \sqrt{280^2 + 200^2 - 2 \times 280 \times 200 \cos 150^\circ}$$

= 464m

$$\frac{\sin \angle BTP}{200} = \frac{\sin 150^{\circ}}{464}$$
$$\angle BTP = \sin^{-1} \frac{200 \sin 150^{\circ}}{464}$$
$$= 12^{\circ}$$

So the pin is 464m from the tee on a bearing of $20 + 12 = 032^{\circ}$. Now consider the result of the mis-hit:

B'P =
$$\sqrt{250^2 + 464^2 - 2 \times 250 \times 464 \cos 32}$$

= 286m

We now need to find obtuse angle TB'P:

$$\frac{\sin \angle \text{TB'P}}{464} = \frac{\sin 32^{\circ}}{286}$$
$$\angle \text{TB'P} = 180 - \sin^{-1} \frac{464 \sin 32^{\circ}}{286}$$
$$= 180 - 60^{\circ}$$

Hence the pin P is 286m from B' on a bearing of 060° .

Exercise 3B

 120° 5. Let m be the magnitude of 10Nthe resultant and θ the angle. 5N $m = \sqrt{5^2 + 10^2 - 2 \times 5 \times 10 \cos 60^{\circ}}$ $=\sqrt{25+100-100\times\frac{1}{2}}$ $=\sqrt{75}$ $=5\sqrt{3}$ $\theta = 090^{\circ}$ (We recognise it as a right angle triangle from our knowledge of exact trig ratios.) 10N______120° 6. Let m be the magnitude of the resultant and θ as shown. 12N $m = \sqrt{12^2 + 10^2 - 2 \times 12 \times 10 \cos 60^{\circ}}$ $=\sqrt{144+100-240 imesrac{1}{2}}$ $=\sqrt{124}$ $= 2\sqrt{31}$ $\frac{\sin\theta}{12} = \frac{\sin 60}{2\sqrt{31}}$ $\theta = \sin^{-1} \frac{12\sin 60}{2\sqrt{31}}$ $= 69^{\circ}$ $Bearing = 90 + 69 = 159^{\circ}$ 15N7. Let m be the magnitude of the resultant and θ as shown. 6N $m = \sqrt{6^2 + 15^2 - 2 \times 6 \times 15 \cos 50^{\circ}}$ = 12.1N $\frac{\sin(\phi)}{6} = \frac{\sin 50}{12.1}$ $\phi = \sin^{-1} \frac{6\sin 50}{12.1}$ $= 22^{\circ}$ $\theta = 180 - 90 - 50 - 22^{\circ}$ $= 018^{\circ}$

100° 8N 80 80 8. Let m be the magnitude of the resultant and θ as shown. 10N $m = \sqrt{8^2 + 10^2 - 2 \times 8 \times 10 \cos 80^\circ}$ = 11.7N $\frac{\sin\theta}{10} = \frac{\sin 80}{11.7}$ $\theta = \sin^{-1} \frac{10 \sin 80}{11.7}$ $= 58^{\circ}$ bearing = $100 + 58^{\circ}$ $= 158^{\circ}$ R=43NF=19Nmagnitude = $\sqrt{R^2 + F^2}$ $=\sqrt{43^2+19^2}$ $= 47 \mathrm{N}$ $\tan \theta = \frac{R}{F}$ $\theta = \tan^{-1} \frac{R}{F}$ $= \tan^{-1} \frac{43}{19}$ $= 66^{\circ}$ R=88NF=19Nmagnitude = $\sqrt{R^2 + F^2}$ $=\sqrt{88^2+19^2}$ = 90N $\tan \theta = \frac{R}{F}$ $\theta = \tan^{-1} \frac{R}{F}$ $= \tan^{-1} \frac{88}{19}$ $=78^{\circ}$

9.

10.

magnitude = $\sqrt{R^2 + F^2}$ = $\sqrt{35^2 + 15^2}$ = 38N $\tan \theta = \frac{R}{F}$ $\theta = \tan^{-1} \frac{R}{F}$ = $\tan^{-1} \frac{35}{15}$ = 67°

R=35N

F=15N

Exercise 3C

1.
$$m = \sqrt{2^2 + 4^2}$$
$$= 4.5 \text{m/s}$$
$$\tan \theta = \frac{4}{2}$$
$$\theta = 63^\circ$$

2. The angle formed where the vectors meet head to tail is $90 - 25 = 65^{\circ}$.

$$m = \sqrt{2^2 + 4^2 - 2 \times 4 \times 2\cos 65}$$
$$= 3.6 \text{m/s}$$
$$\frac{\sin \theta}{4} = \frac{\sin 65^{\circ}}{3.6}$$
$$\theta = \sin^{-1} \frac{4\sin 65^{\circ}}{3.6}$$
$$= 85^{\circ}$$

3. The angle formed where the vectors meet head to tail is $180 - 50 = 130^{\circ}$.

$$m = \sqrt{2^2 + 4^2 - 2 \times 4 \times 2\cos 130}$$
$$= 5.5 \text{m/s}$$
$$\frac{\sin \theta}{4} = \frac{\sin 130^{\circ}}{5.5}$$
$$\theta = \sin^{-1} \frac{4\sin 130^{\circ}}{5.5}$$
$$= 34^{\circ}$$

The boat travels on a bearing of 353° 15.3km in one hour.

5. Wind blowing from 330° is blowing toward $330 - 180 = 150^{\circ}$.

The bird travels on a bearing of 170° at 71.8 km/h. To travel due south:

7. The angle can be determined using cosine. If r is the speed of the river current and θ is the angle with the bank, then $\cos \theta = \frac{r}{10}$.

The speed of the boat's movement across the river (s) can be determined using Pythagoras: $s = \sqrt{10^2 - r^2}$.

Then the time taken to cross the river is

$$t = \frac{0.08}{s} \times 3600 = \frac{288}{s}$$
 seconds.

(a)
$$\theta = \cos^{-1} \frac{3}{10}$$
 (b) $\theta = \cos^{-1} \frac{4}{10}$
 $= 73^{\circ} = 66^{\circ}$
 $s = \sqrt{10^2 - 3^2} = s = \sqrt{10^2 - 4^2}$
 $= 9.5 \text{km/h} = 9.2 \text{km/h}$
 $t = \frac{288}{9.5} = t = \frac{288}{9.2}$
 $= 30 \text{ s} = 31 \text{ s}$

The plane should fly on a bearing of 048° .

$$\angle ABC = 180 - 120 - 8$$
$$= 52^{\circ}$$
$$\frac{AC}{\sin 52^{\circ}} = \frac{350}{\sin 120^{\circ}}$$
$$AC = \frac{350 \sin 52^{\circ}}{\sin 120^{\circ}}$$
$$= 319 \text{km/h}$$

Time required for the flight:

$$t = \frac{500}{319} \times 60 = 94$$
 minutes

For the return flight:

$$350$$
 km/h θ 40° A

N ▲

$$2ACB = 140 - 80$$
$$= 60^{\circ}$$
$$\frac{\sin \theta}{56} = \frac{\sin 60^{\circ}}{350}$$
$$\theta = \sin^{-1} \frac{56 \sin 60^{\circ}}{350}$$
$$= 8^{\circ}$$

The plane should fly on a bearing of 180 + (40 - 40) $8) = 212^{\circ}.$

$$\angle ABC = 180 - 60 - 8$$

= 112°
$$\frac{AC}{\sin 112^{\circ}} = \frac{350}{\sin 60^{\circ}}$$

$$AC = \frac{350 \sin 112^{\circ}}{\sin 60^{\circ}}$$

= 374km/h

Time required for the return flight:

$$t = \frac{500}{374} \times 60 = 80$$
 minutes

11.

2m/sR Ε▼ ′30° $6 \mathrm{m/s}$ А $\angle \mathrm{B} = 180-30$ $= 150^{\circ}$ $\frac{\sin \angle A}{2} = \frac{\sin 150^\circ}{6}$ $\overset{0}{\angle A} = \sin^{-1} \frac{2\sin 150^{\circ}}{6}$ 6 $= 9.6^{\circ}$ $\angle E = 180 - 150 - 9.6$ $= 20.4^{\circ}$ AB 6 $\frac{\mathrm{AB}}{\sin 20.4^{\circ}} = \frac{\mathrm{o}}{\sin 150^{\circ}}$ $\mathrm{AB} = \frac{6\sin 20.4}{\sin 150^\circ}$ = 4.2 m/s $t_{\rm AB} = \frac{80}{4.2}$ = 19.12s2m/sС F $6 \mathrm{m/s}$ 50° B /30° $\angle C = 50 - 30$ $=20^{\circ}$ $\frac{\sin \angle B}{2} = \frac{\sin 20^{\circ}}{6}$ $\angle B = \sin^{-1} \frac{2\sin 20^\circ}{6}$ $= 6.5^{\circ}$ $\angle F = 180 - 20 - 6.5$ $= 153.5^{\circ}$ $\frac{BC}{\sin 153.5^{\circ}} = \frac{6}{\sin 20^{\circ}}$ $BC = \frac{6\sin 153.5}{\sin 20^{\circ}}$ = 7.8 m/s $t_{\rm BC}=\frac{110}{7.8}$ = 14.03s

$$\frac{C}{60^{\circ}}$$

$$\frac{60^{\circ}}{2m/s}$$

$$\frac{\sin \angle C}{2} = \frac{\sin 60^{\circ}}{6}$$

$$\angle C = \sin^{-1} \frac{2 \sin 60^{\circ}}{6}$$

$$= 16.8^{\circ}$$

$$\angle G = 180 - 60 - 16.8$$

$$= 103.2^{\circ}$$

$$\frac{BC}{\sin 103.2^{\circ}} = \frac{6}{\sin 60^{\circ}}$$

$$BC = \frac{6 \sin 103.2}{\sin 60^{\circ}}$$

$$= 6.7m/s$$

Perpendicular width of river:

$$w_{AB} = 80 \sin 30^{\circ}$$

= 40m
$$w_{BC} = 110 \sin 20^{\circ}$$

= 37.6m
$$w = 40 + 37.6$$

= 77.6m
$$CD = \frac{77.6}{\sin 60^{\circ}}$$

= 89.6m
$$t_{CD} = \frac{89.6}{6.7}$$

= 13.29s

Total time:

$$t = 19.12 + 14.03 + 13.29$$

\$\approx 46s\$

Exercise 3D

No working is needed for questions 1–7. Refer to the answers in Sadler.

8. N a+b N 30° a+b N 30° a b (4 units) a-b (4 units)

(a)
$$\theta + 30 = 180 - 70$$

 $\theta = 80^{\circ}$
 $|\mathbf{a} + \mathbf{b}| = \sqrt{5^2 + 4^2 - 2 \times 5 \times 4 \cos 80^{\circ}}$
 $= 5.8 \text{ units}$
 $\frac{\sin \alpha}{4} = \frac{\sin 80^{\circ}}{5.8}$
 $\alpha = \sin^{-1} \frac{4 \sin 80^{\circ}}{5.8}$
 $= 42^{\circ}$
 $70 - \alpha = 28^{\circ}$

(b)
$$180 - \theta = 180 - 80$$

 $= 100^{\circ}$
 $|\mathbf{a} - \mathbf{b}| = \sqrt{5^2 + 4^2 - 2 \times 5 \times 4 \cos 100^{\circ}}$
 $= 6.9 \text{ units}$
 $\frac{\sin \beta}{4} = \frac{\sin 100^{\circ}}{6.9}$
 $\beta = \sin^{-1} \frac{4 \sin 100^{\circ}}{6.9}$
 $= 35^{\circ}$
 $70 + \beta = 105^{\circ}$

(a)
$$\theta = 360 - 260 - (180 - 130)$$

 $= 50^{\circ}$
 $|2\mathbf{e} + \mathbf{f}| = \sqrt{80^2 + 30^2 - 2 \times 80 \times 30 \cos 50^{\circ}}$
 $= 65 \text{ units}$
 $\frac{\sin \alpha}{30} = \frac{\sin 50^{\circ}}{65}$
 $\alpha = \sin^{-1} \frac{30 \sin 50^{\circ}}{65}$
 $= 21^{\circ}$
 $130 + \alpha = 151^{\circ}$

(b)
$$180 - \theta = 180 - 50$$

 $= 130^{\circ}$
 $|\mathbf{e} - 2\mathbf{f}| = \sqrt{40^2 + 60^2 - 2 \times 40 \times 60 \cos 130^{\circ}}$
 $= 91 \text{ units}$
 $\frac{\sin \beta}{60} = \frac{\sin 130^{\circ}}{91}$
 $\beta = \sin^{-1} \frac{60 \sin 130^{\circ}}{91}$
 $= 30^{\circ}$
 $130 - \beta = 100^{\circ}$

10.

$$-\mathbf{u} (5.4 \text{ m/s}) \qquad \mathbf{v} (7.8 \text{ m/s}) \qquad \mathbf{v}$$

$$|\mathbf{v} - \mathbf{u}| = \sqrt{5.4^2 + 7.8^2}$$

$$= 9.5 \text{ m/s}$$

$$\tan \alpha = \frac{5.4}{7.8}$$

$$\alpha = \tan^{-1} \frac{5.4}{7.8}$$

$$= 35^{\circ}$$

$$270 - \alpha = 235^{\circ}$$

$$\mathbf{a} = \frac{\mathbf{v} - \mathbf{u}}{t}$$

$$= \frac{9.5 \angle 235^{\circ}}{5}$$

$$= 1.9 \text{ m/s}^2 \text{ on a bearing of } 235^{\circ}$$

 $= 0.5\mathbf{c} - 0.5\mathbf{a}$

14.
(a)
$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -\mathbf{a} + \mathbf{b}$$

(b) $\overrightarrow{AC} = 0.75\overrightarrow{AB} = -0.75\mathbf{a} + 0.75\mathbf{b}$
(c) $\overrightarrow{CB} = 0.25\overrightarrow{AB} = -0.25\mathbf{a} + 0.25\mathbf{b}$
(d) $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC}$
 $= \mathbf{a} - 0.75\mathbf{a} + 0.75\mathbf{b}$
 $= 0.25\mathbf{a} + 0.75\mathbf{b}$
15.
(a) $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \mathbf{a} + \mathbf{b}$
(b) $\overrightarrow{BE} = \frac{1}{3}\overrightarrow{BC} = \frac{1}{3}\mathbf{b}$
(c) $\overrightarrow{DF} = \frac{1}{2}\overrightarrow{DC} = \frac{1}{2}\mathbf{a}$
(d) $\overrightarrow{AE} = \overrightarrow{AB} + \overrightarrow{BE} = \mathbf{a} + \frac{1}{3}\mathbf{b}$
(e) $\overrightarrow{AF} = \overrightarrow{AD} + \overrightarrow{DF} = \mathbf{b} + \frac{1}{2}\mathbf{a}$
(f) $\overrightarrow{BF} = \overrightarrow{BA} + \overrightarrow{AF}$
 $= -\mathbf{a} + \mathbf{b} + \frac{1}{2}\mathbf{a}$
 $= \mathbf{b} - \frac{1}{2}\mathbf{a}$
(g) $\overrightarrow{DE} = \overrightarrow{DA} + \overrightarrow{AE}$
 $= -\overrightarrow{b} + \mathbf{a} + \frac{1}{3}\mathbf{b}$
 $= \mathbf{a} - \frac{2}{3}\mathbf{b}$
(h) $\overrightarrow{EF} = \overrightarrow{EA} + \overrightarrow{AF}$
 $= -(\mathbf{a} + \frac{1}{3}\mathbf{b}) + \mathbf{b} + \frac{1}{2}\mathbf{a}$
 $= -\frac{1}{2}\mathbf{a} + \frac{2}{3}\mathbf{b}$
16.
(a) $\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = \mathbf{a} + \mathbf{b}$
(b) $\overrightarrow{OC} = 2\overrightarrow{AB} = 2\mathbf{b}$
(c) $\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC} + \overrightarrow{OC}$
 $= -\overrightarrow{AB} - \overrightarrow{OA} + \overrightarrow{OC}$
 $= -\overrightarrow{AB} - \overrightarrow{OA} + \overrightarrow{OC}$

 $= -\mathbf{a} + \mathbf{b}$

(e)
$$\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD}$$

= $\mathbf{a} + \mathbf{b} - 0.5\mathbf{a} + 0.5\mathbf{b}$
= $0.5\mathbf{a} + 1.5\mathbf{b}$

(d) $\overrightarrow{BD} = 0.5\overrightarrow{BC} = -0.5\mathbf{a} + 0.5\mathbf{b}$

17. (a)
$$\overrightarrow{OC} = 0.5\overrightarrow{OA} = 0.5\mathbf{a}$$

(b)
$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -\mathbf{a} + \mathbf{b}$$

(c)
$$\overrightarrow{AD} = \frac{2}{3}\overrightarrow{AB} = -\frac{2}{3}\mathbf{a} + \frac{2}{3}\mathbf{b}$$

(d)
$$\overrightarrow{CD} = \overrightarrow{CA} + \overrightarrow{AD}$$

= $\frac{1}{2}\mathbf{a} + (-\frac{2}{3}\mathbf{a} + \frac{2}{3}\mathbf{b})$
= $-\frac{1}{6}\mathbf{a} + \frac{2}{3}\mathbf{b}$

(e)

$$\overrightarrow{OC} + \overrightarrow{CE} = \overrightarrow{OE}$$

$$\overrightarrow{OC} + h\overrightarrow{CD} = k\overrightarrow{OB}$$

$$\frac{1}{2}\mathbf{a} + h(-\frac{1}{6}\mathbf{a} + \frac{2}{3}\mathbf{b}) = k\mathbf{b}$$

$$(\frac{1}{2} - \frac{h}{6})\mathbf{a} = (k - \frac{2h}{3})\mathbf{b}$$

$$\frac{1}{2} - \frac{h}{6} = 0$$

$$3 - h = 0$$

$$h = 3$$

$$k - \frac{2h}{3} = 0$$

$$k = \frac{2h}{3}$$

$$= \frac{2 \times 3}{3}$$

$$= 2$$

$$\frac{2h}{3} - 1 = 0$$
$$\frac{2h}{3} = 1$$
$$2h = 3$$
$$h = \frac{3}{2}$$
$$2k - \frac{5h}{3} = 0$$
$$2k = \frac{5h}{3}$$
$$k = \frac{5h}{6}$$
$$= \frac{5}{6} \times \frac{3}{2}$$
$$= \frac{5}{4}$$

Miscellaneous Exercise 3

Algebraically: First solve |2x - 1| = |x - 5| 2x - 1 = x - 5 or -(2x - 1) = x - 5 x = -4 -2x + 1 = x - 5 -3x = -4x = 2 Now test one of the three intervals delimited by these two solutions. Try a value, say x = 0: Is it true that $|5(0) - 1| \le |(0) - 5|$? Yes $(1 \le 5)$.

Solution set is

$$\{x \in \mathbb{R} : -4 \le x \le 2\}$$

(b) This is the complementary case to the previous question, so it has the complementary solution:

$$\{x \in \mathbb{R} : x < -4\} \cup \{x \in \mathbb{R} : x > 2\}$$

$$x \ge 3$$

Algebraically: First solve |x - 10| = 2x + 1 x - 10 = 2x + 1 or -(x - 10) = 2x + 1 x = -11 -x + 10 = 2x + 1 -3x = -9x = 3

However, x = -11 is not actually a solution, as you can see by substituting into the equation, so we are left with two intervals (either side of x = 3).

Now test one of these intervals delimited by these two solutions. Try a value, say x = 0: Is it true that $|(0) - 10| \le 2(0) + 1$? No $(10 \le 1)$.

Solution set is

2.

$$\{x \in \mathbb{R} : x \ge 3\}$$

It's tempting to find angle α using the sine rule, but because it's opposite the longest side of the triangle, it could be either acute or obtuse: it's the ambiguous case. Finding β instead is unambiguous. β can not be obtuse because it is opposite a shorter side.

$$\frac{\sin \beta}{2.4} = \frac{\sin 50^{\circ}}{3.4}$$
$$\beta = \sin^{-1} \frac{2.4 \sin 50^{\circ}}{3.4}$$
$$= 33^{\circ}$$
bearing = 190 + (180 - 33)
$$= 327^{\circ}$$

In each case below, let θ be the angle formed between **c** and the resultant.

(a)
$$|\mathbf{c} + \mathbf{d}| = \sqrt{10^2 + 12^2 - 2 \times 10 \times 12 \cos 110^\circ}$$

= 18.1 units

$$\frac{\sin \theta}{12} = \frac{\sin 110^{\circ}}{18.1}$$
$$\theta = \sin^{-1} \frac{12 \sin 110^{\circ}}{18.1}$$
$$= 39^{\circ}$$
direction = 160 - 39
$$= 121^{\circ}$$

(b)
$$|\mathbf{c} - \mathbf{d}| = \sqrt{10^2 + 12^2 - 2 \times 10 \times 12 \cos 70^\circ}$$

 $= 12.7 \text{ units}$
 $\frac{\sin \theta}{12} = \frac{\sin 70^\circ}{12.7}$
 $\theta = \sin^{-1} \frac{12 \sin 70^\circ}{12.7}$
 $= 62^\circ$
direction = 160 + 62
 $= 222^\circ$
(c) $|\mathbf{c} + 2\mathbf{d}| = \sqrt{10^2 + 24^2 - 2 \times 10 \times 24 \cos 110^\circ}$
 $= 29.0 \text{ units}$
 $\frac{\sin \theta}{24} = \frac{\sin 110^\circ}{29.0}$
 $\theta = \sin^{-1} \frac{24 \sin 110^\circ}{29.0}$
 $= 51^\circ$
direction = 160 - 51
 $= 109^\circ$

5. First, rearrange the equation to

$$|x - a| + |x + 3| = 5$$

and read this as "distance from a plus distance from -3 is equal to 5".

- If the distance between a and -3 is greater than 5 then the equation has no solution.
- If the distance between a and -3 is equal to 5 then every point between a and -3 is a solution.
- If the distance between a and -3 is less than 5 then there will be two solutions, one lying above the interval between -3 and a and one lying below it.
- (a) For exactly two solutions,

$$|a+3| < 5$$

 $-5 < a+3 < 5$
 $-8 < a < 2$

(b) For more than two solutions,

|a+3| = 5a+3=5 or a+3=-5a=2 a=-8

6. Let l be the length of the ladder.

1

7. (a)
$$h = k = 0$$

(b) $ha + b = kb$
 $ha = kb - b$
 $= (k - 1)b$
 $h = 0$
 $k = 1$
(c) $(h - 3)a = (k + 1)b$
 $h - 3 = 0$
 $h = 3$
 $k + 1 = 0$
 $h = 3$
 $k = -1$
(d) $ha + 2a = kb - 3a$
 $ha + 5a = kb$
 $(h + 5)a = kb$
 $h + 5 = 0$
 $h = -5$
(e) $3ha + ka + hb - 2kb = a + 5b$
 $3ha + ka - a = 5b - hb + 2kb$
 $(3h + k - 1)a = (5 - h + 2k)b$
 $3h + k - 1 = 0$
 $3h + k = 1$
 $h - 2k = 5$
 $h = 1$
 $k = -2$

(Note: the final step in the solution above is done by solving the simultaneous equations 3h + k = 1 and h - 2k = 5. You should be familiar with doing this by elimination or substitution. (Either would be suitable here.) You should also know how to do it on the ClassPad:

In the Main application, select the simultaneous equations icon in the 2D tab. Enter the two equations to the left of the vertical bar, and the two variables to the right:

$$\begin{vmatrix} 3h+k=1 \\ h-2k=5 \end{vmatrix}$$
, k
{h=1,k=-2}

(f)
$$h(\mathbf{a} + \mathbf{b}) + k(\mathbf{a} - \mathbf{b}) = 3\mathbf{a} + 5\mathbf{b}$$

 $(h+k)\mathbf{a} + (h-k)\mathbf{b} = 3\mathbf{a} + 5\mathbf{b}$
 $(h+k-3)\mathbf{a} = -(h-k-5)\mathbf{b}$
 $h+k-3 = 0$
 $h-k-5 = 0$
 $h+k = 3$
 $h-k = 5$

solving by elimination:

$$2h = 8$$
$$h = 4$$
$$4 + k = 3$$
$$k = -1$$

Let the height of the tree be h. Let A be the point at the base of the tree and B the point at the apex.

 $\tan 28^{\circ} = \frac{h}{\text{AC}}$ $\text{AC} = \frac{h}{\tan 28^{\circ}}$ $\tan 20^{\circ} = \frac{h}{\text{AD}}$ $\text{AD} = \frac{h}{\tan 20^{\circ}}$

 \triangle ACD is right-angled at C, so

$$AD^{2} = AC^{2} + CD^{2}$$
$$\frac{h^{2}}{\tan^{2} 20^{\circ}} = \frac{h^{2}}{\tan^{2} 28^{\circ}} + 65^{2}$$
$$h^{2} \left(\frac{1}{\tan^{2} 20^{\circ}} - \frac{1}{\tan^{2} 28^{\circ}}\right) = 65^{2}$$

Solving this and discarding the negative root:

$$h = 32.5m$$
$$AC = \frac{h}{\tan 28^{\circ}}$$
$$= 61.0m$$