Chapter 3

Exercise 3A

1. (a) $\angle \mathrm{ABN}=180-50$

$$
\begin{aligned}
&=130^{\circ} \\
& \angle \mathrm{ABC}=360-90-130 \\
&=140^{\circ} \\
& \mathrm{AC}= \sqrt{5.8^{2}+6.4^{2}-2 \times 5.8 \times 6.4 \cos 140^{\circ}} \\
&= 11.5 \mathrm{~km} \\
& \begin{array}{c}
\sin \angle \mathrm{BAC} \\
6.4
\end{array}=\frac{\sin 140^{\circ}}{11.5} \\
& \angle \mathrm{BAC}=\sin ^{-1} \frac{6.4 \sin 140^{\circ}}{11.5} \\
&= 21^{\circ} \\
& 50+21=71^{\circ}
\end{aligned}
$$

C is 11.5 km on a bearing of 071° from A .
(b) $71+180=251^{\circ}$

A has a bearing of 251° from C.
2. (a) Bearing of A from B is $300-180=120^{\circ}$.

$$
\begin{aligned}
\angle \mathrm{ABC} & =120-70 \\
& =50^{\circ} \\
\mathrm{AC}= & \sqrt{4.9^{2}+7.2^{2}-2 \times 4.9 \times 7.2 \cos 50^{\circ}} \\
= & 5.5 \mathrm{~km}
\end{aligned}
$$

We'll initially find $\angle \mathrm{BCA}$ rather than $\angle \mathrm{BAC}$ because the sine rule is ambiguous for $\angle \mathrm{BAC}$ but $\angle \mathrm{BCA}$ can not be obtuse (because it is opposite a smaller side).

$$
\begin{aligned}
\frac{\sin \angle \mathrm{BCA}}{4.9} & =\frac{\sin 50^{\circ}}{5.5} \\
\angle \mathrm{BCA} & =\sin ^{-1} \frac{4.9 \sin 50^{\circ}}{5.5} \\
& =43^{\circ} \\
\angle \mathrm{BAC} & =180-50-43 \\
& =87^{\circ} \\
300+87 & =387 \\
387-360 & =027^{\circ}
\end{aligned}
$$

C is 8.5 km on a bearing of 027° from A .
(b) $27+180=207^{\circ}$

A has a bearing of 207° from C.
3. (a) Bearing of A from B is $40+180=220^{\circ}$.

Bearing of C from B is $360-100=260^{\circ}$.

$$
\begin{aligned}
& \angle \mathrm{ABC}=260-220 \\
& \quad=40^{\circ} \\
& \mathrm{AC}=\sqrt{73^{2}+51^{2}-2 \times 73 \times 51 \cos 40^{\circ}} \\
& =47 \mathrm{~km}
\end{aligned}
$$

We'll initially find $\angle \mathrm{BCA}$ rather than $\angle \mathrm{BAC}$ because the sine rule is ambiguous for $\angle \mathrm{BAC}$ but $\angle \mathrm{BCA}$ can not be obtuse (because it is opposite a smaller side).

$$
\begin{aligned}
\frac{\sin \angle \mathrm{BCA}}{51} & =\frac{\sin 40^{\circ}}{47} \\
\angle \mathrm{BCA} & =\sin ^{-1} \frac{51 \sin 40^{\circ}}{47} \\
& =44^{\circ} \\
\angle \mathrm{BAC} & =180-40-44 \\
& =96^{\circ} \\
40-96 & =-56 \\
-56+360 & =304^{\circ}
\end{aligned}
$$

C is 47 km on a bearing of 304° from A .
(b) $304-180=124^{\circ}$

A has a bearing of 124° from C.
4. (a)

Scale=1:20000
(b) Bearing of A from C is $89+180=269^{\circ}$
5. (a)

Scale $=1: 2000$
(b) Bearing of A from C is $46+180=226^{\circ}$
6. (a)

Scale $=1: 1000$
Bearing of C from A is $360-125=235^{\circ}$.
(b) Bearing of A from C is $215-180=055^{\circ}$
7.

$$
\begin{aligned}
\angle \mathrm{ABC} & =110-10 \\
& =100^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{AC} & =\sqrt{5.2^{2}+6.4^{2}-2 \times 5.2 \times 6.4 \cos 100^{\circ}} \\
& =8.9 \mathrm{~km}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\sin \angle \mathrm{BAC}}{6.4} & =\frac{\sin 100^{\circ}}{8.9} \\
\angle \mathrm{BAC} & =\sin ^{-1} \frac{6.4 \sin 100^{\circ}}{8.9} \\
& =45^{\circ} \\
190-45 & =145^{\circ}
\end{aligned}
$$

Final position is 8.9 km on a bearing of 145° from initial position.
8.

$$
\begin{aligned}
\angle \mathrm{ABC} & =180-132 \\
& =48^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{AC} & =\sqrt{2.6^{2}+4.3^{2}-2 \times 2.6 \times 4.3 \cos 48^{\circ}} \\
& =3.2 \mathrm{~km}
\end{aligned}
$$

We'll initially find $\angle \mathrm{BCA}$ rather than $\angle \mathrm{BAC}$ because the sine rule is ambiguous for $\angle \mathrm{BAC}$ but $\angle B C A$ can not be obtuse (because it is opposite a smaller side).

$$
\begin{aligned}
\frac{\sin \angle \mathrm{BCA}}{2.6} & =\frac{\sin 48^{\circ}}{3.2} \\
\angle \mathrm{BCA} & =\sin ^{-1} \frac{2.6 \sin 48^{\circ}}{3.2} \\
& =37^{\circ} \\
\angle \mathrm{BCA} & =180-48-41 \\
& =95^{\circ}
\end{aligned}
$$

Final position is 3.2 km on a bearing of 095° from initial position.
9. $d=\sqrt{30^{2}+20^{2}-2 \times 30 \times 20 \cos 110}$

$$
=41 \mathrm{~m}
$$

10.

Let $\theta=\angle \mathrm{BAC}=\angle \mathrm{BAC}^{\prime}$

$$
\begin{aligned}
400^{2} & =600^{2}+500^{2}-2 \times 600 \times 500 \cos \theta \\
\cos \theta & =\frac{600^{2}+500^{2}-400^{2}}{2 \times 600 \times 500} \\
\theta & =\cos ^{-1} \frac{600^{2}+500^{2}-400^{2}}{2 \times 600 \times 500} \\
& =41^{\circ}
\end{aligned}
$$

The bearing of the second checkpoint from the start is either: $(30-41)+360=349^{\circ}$ or $30+41=$ 071°.
11. First, determine the bearing and distance from tee to pin. The angle at the bend is $180-(50-$ 20) $=150^{\circ}$. Call the bend point B and tee and pin T and P respectively.

$$
\begin{aligned}
\mathrm{TP} & =\sqrt{280^{2}+200^{2}-2 \times 280 \times 200 \cos 150^{\circ}} \\
& =464 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\sin \angle \mathrm{BTP}}{200} & =\frac{\sin 150^{\circ}}{464} \\
\angle \mathrm{BTP} & =\sin ^{-1} \frac{200 \sin 150^{\circ}}{464} \\
& =12^{\circ}
\end{aligned}
$$

So the pin is 464 m from the tee on a bearing of $20+12=032^{\circ}$. Now consider the result of the mis-hit:

$B^{\prime} P=\sqrt{250^{2}+464^{2}-2 \times 250 \times 464 \cos 32}$
$=286 \mathrm{~m}$
We now need to find obtuse angle TB'P:

$$
\begin{aligned}
\frac{\sin \angle \mathrm{TB}^{\prime} \mathrm{P}}{464} & =\frac{\sin 32^{\circ}}{286} \\
\angle \mathrm{~TB}^{\prime} \mathrm{P} & =180-\sin ^{-1} \frac{464 \sin 32^{\circ}}{286} \\
& =180-60^{\circ}
\end{aligned}
$$

Hence the pin P is 286 m from B^{\prime} on a bearing of 060°.

Exercise 3B

1. Let m be the magnitude of the resultans and θ the angle.
$m=\sqrt{6^{2}+4^{2}-2 \times 6 \times 4 \cos 110^{\circ}}$ $=8.3$

$$
\begin{aligned}
\frac{\sin \theta}{4} & =\frac{\sin 110^{\circ}}{8.3} \\
\theta & =\sin ^{-1} \frac{4 \sin 110^{\circ}}{8.3} \\
& =27^{\circ}
\end{aligned}
$$

2. Let m be the magnitude of the resultans and θ the angle.
$m=\sqrt{10^{2}+8^{2}-2 \times 10 \times 8 \cos 130^{\circ}}$

$$
\begin{aligned}
\frac{\sin \theta}{6} & =\frac{\sin 130^{\circ}}{16.3} \\
\theta & =\sin ^{-1} \frac{6 \sin 130^{\circ}}{16.3} \\
& =22^{\circ}
\end{aligned}
$$

4. Let m be the magnitude of the resultant and θ the angle.

$$
\begin{aligned}
m & =\sqrt{14^{2}+20^{2}} \\
& =24.4 \\
\tan (60-\theta) & =\frac{14}{20} \\
60-\theta & =35 \\
\theta & =25^{\circ}
\end{aligned}
$$

3. Let m be the magnitude of the resultans and θ the angle.

$$
\begin{aligned}
m & =\sqrt{20^{2}+20^{2}} \\
& =28.3 \\
\theta & =0
\end{aligned}
$$

5. Let m be the magnitude of the resultant and θ the angle.

$$
\begin{aligned}
m & =\sqrt{5^{2}+10^{2}-2 \times 5 \times 10 \cos 60^{\circ}} \\
& =\sqrt{25+100-100 \times \frac{1}{2}} \\
& =\sqrt{75} \\
& =5 \sqrt{3} \\
\theta & =090^{\circ}
\end{aligned}
$$

(We recognise it as a right angle triangle from our knowledge of exact trig ratios.)
6. Let m be the magnitude of the resultant and θ as shown.

$$
\begin{aligned}
m & =\sqrt{12^{2}+10^{2}-2 \times 12 \times 10 \cos 60^{\circ}} \\
& =\sqrt{144+100-240 \times \frac{1}{2}} \\
& =\sqrt{124} \\
& =2 \sqrt{31} \\
\frac{\sin \theta}{12} & =\frac{\sin 60}{2 \sqrt{31}} \\
\theta & =\sin ^{-1} \frac{12 \sin 60}{2 \sqrt{31}} \\
& =69^{\circ}
\end{aligned}
$$

Bearing $=90+69=159^{\circ}$
7. Let m be the magnitude of the resultant and θ as shown.

$$
\begin{aligned}
m & =\sqrt{6^{2}+15^{2}-2 \times 6 \times 15 \cos 50^{\circ}} \\
& =12.1 \mathrm{~N} \\
\frac{\sin (\phi)}{6} & =\frac{\sin 50}{12.1} \\
\phi & =\sin ^{-1} \frac{6 \sin 50}{12.1} \\
& =22^{\circ} \\
\theta & =180-90-50-22^{\circ} \\
& =018^{\circ}
\end{aligned}
$$

8. Let m be the magnitude of the resultant and θ as shown.

$$
\begin{aligned}
m & =\sqrt{8^{2}+10^{2}-2 \times 8 \times 10 \cos 80^{\circ}} \\
& =11.7 \mathrm{~N} \\
\frac{\sin \theta}{10} & =\frac{\sin 80}{11.7} \\
\theta & =\sin ^{-1} \frac{10 \sin 80}{11.7} \\
& =58^{\circ} \\
\text { bearing } & =100+58^{\circ} \\
& =158^{\circ}
\end{aligned}
$$

9.

$$
\begin{aligned}
\text { magnitude } & =\sqrt{R^{2}+F^{2}} \\
& =\sqrt{43^{2}+19^{2}} \\
& =47 \mathrm{~N} \\
\tan \theta & =\frac{R}{F} \\
\theta & =\tan ^{-1} \frac{R}{F} \\
& =\tan ^{-1} \frac{43}{19} \\
& =66^{\circ}
\end{aligned}
$$

10.

$$
\begin{aligned}
\text { magnitude } & =\sqrt{R^{2}+F^{2}} \\
& =\sqrt{88^{2}+19^{2}} \\
& =90 \mathrm{~N} \\
\tan \theta & =\frac{R}{F} \\
\theta & =\tan ^{-1} \frac{R}{F} \\
& =\tan ^{-1} \frac{88}{19} \\
& =78^{\circ}
\end{aligned}
$$

11.

$$
\begin{aligned}
\text { magnitude } & =\sqrt{R^{2}+F^{2}} \\
& =\sqrt{35^{2}+15^{2}} \\
& =38 \mathrm{~N} \\
\tan =15 \mathrm{~N} \theta & =\frac{R}{F} \\
\theta & =\tan ^{-1} \frac{R}{F} \\
& =\tan ^{-1} \frac{35}{15} \\
& =67^{\circ}
\end{aligned}
$$

Exercise 3C

1. $m=\sqrt{2^{2}+4^{2}}$

$$
\begin{aligned}
& =4.5 \mathrm{~m} / \mathrm{s} \\
\tan \theta & =\frac{4}{2} \\
\theta & =63^{\circ}
\end{aligned}
$$

2. The angle formed where the vectors meet head to tail is $90-25=65^{\circ}$.

$$
\begin{aligned}
m & =\sqrt{2^{2}+4^{2}-2 \times 4 \times 2 \cos 65} \\
& =3.6 \mathrm{~m} / \mathrm{s} \\
\frac{\sin \theta}{4} & =\frac{\sin 65^{\circ}}{3.6} \\
\theta & =\sin ^{-1} \frac{4 \sin 65^{\circ}}{3.6} \\
& =85^{\circ}
\end{aligned}
$$

12.

$$
\begin{aligned}
m & =\sqrt{8^{2}+12^{2}-2 \times 8 \times 12 \cos 50^{\circ}} \\
& =9.2 \mathrm{~N} \\
\frac{\sin \theta}{8} & =\frac{\sin 50^{\circ}}{9.2} \\
\theta & =\sin ^{-1} \frac{8 \sin 50^{\circ}}{9.2} \\
& =42^{\circ}
\end{aligned}
$$

13.

$$
\begin{aligned}
m & =\sqrt{10^{2}+15^{2}-2 \times 10 \times 15 \cos 135^{\circ}} \\
& =23.2 \mathrm{~N} \\
\frac{\sin \theta}{15} & =\frac{\sin 135^{\circ}}{23.2} \\
\theta & =\sin ^{-1} \frac{15 \sin 135^{\circ}}{23.2} \\
& =27^{\circ}
\end{aligned}
$$

3. The angle formed where the vectors meet head to tail is $180-50=130^{\circ}$.

$$
\begin{aligned}
m & =\sqrt{2^{2}+4^{2}-2 \times 4 \times 2 \cos 130} \\
& =5.5 \mathrm{~m} / \mathrm{s} \\
\frac{\sin \theta}{4} & =\frac{\sin 130^{\circ}}{5.5} \\
\theta & =\sin ^{-1} \frac{4 \sin 130^{\circ}}{5.5} \\
& =34^{\circ}
\end{aligned}
$$

4.

$$
\begin{aligned}
\angle \mathrm{ABC} & =180-30-100 \\
& =50^{\circ} \\
\mathrm{AC} & =\sqrt{20^{2}+12^{2}-2 \times 20 \times 12 \cos 50^{\circ}} \\
& =15.3 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\sin \left(\theta+30^{\circ}\right)}{12} & =\frac{\sin 50^{\circ}}{15.3} \\
\theta+30 & =\sin ^{-1} \frac{12 \sin 50^{\circ}}{15.3} \\
& =37^{\circ} \\
\theta & =7^{\circ}
\end{aligned}
$$

The boat travels on a bearing of $353^{\circ} 15.3 \mathrm{~km}$ in one hour.
5. Wind blowing from 330° is blowing toward $330-$ $180=150^{\circ}$.

$$
\begin{aligned}
\mathrm{AC} & =\sqrt{50^{2}+24^{2}-2 \times 50 \times 24 \cos 150^{\circ}} \\
& =71.8 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\sin \left(180^{\circ}-\theta\right)}{24} & =\frac{\sin 150^{\circ}}{71.8} \\
180-\theta & =\sin ^{-1} \frac{24 \sin 150^{\circ}}{71.8} \\
& =10^{\circ} \\
\theta & =170^{\circ}
\end{aligned}
$$

The bird travels on a bearing of 170° at $71.8 \mathrm{~km} / \mathrm{h}$.

To travel due south:

$$
\begin{aligned}
\angle \mathrm{ACB} & =180-150 \\
& =30^{\circ} \\
\frac{\sin \left(180^{\circ}-\theta\right)}{24} & =\frac{\sin 30^{\circ}}{50} \\
180-\theta & =\sin ^{-1} \frac{24 \sin 30^{\circ}}{50} \\
& =14^{\circ} \\
\theta & =166^{\circ}
\end{aligned}
$$

6. (a) $h=3 \times 60$

$$
=180 \mathrm{~m}
$$

(b) $s=\sqrt{3^{2}+1^{2}}$

$$
\begin{aligned}
& =\sqrt{10} \mathrm{~m} / \mathrm{s} \\
& \approx 3.2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(c) $\tan \theta=\frac{3}{1}$

$$
\theta=72^{\circ}
$$

The speed of the boat's movement across the river (s) can be determined using Pythagoras: $s=\sqrt{10^{2}-r^{2}}$.

Then the time taken to cross the river is

$$
t=\frac{0.08}{s} \times 3600=\frac{288}{s} \text { seconds. }
$$

(a) $\theta=\cos ^{-1} \frac{3}{10}$
(b) $\theta=\cos ^{-1} \frac{4}{10}$

$$
\begin{aligned}
& =73^{\circ} \\
s & =\sqrt{10^{2}-3^{2}} \\
& =9.5 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

$$
=66^{\circ}
$$

$$
s=\sqrt{10^{2}-4^{2}}
$$

$$
=9.2 \mathrm{~km} / \mathrm{h}
$$

$$
t=\frac{288}{9.5}
$$

$$
t=\frac{288}{9.2}
$$

$$
=30 \mathrm{~s}
$$

$$
=31 \mathrm{~s}
$$

(c) $\theta=\cos ^{-1} \frac{6}{10}$

$$
=53^{\circ}
$$

$$
s=\sqrt{10^{2}-6^{2}}
$$

$$
=8 \mathrm{~km} / \mathrm{h}
$$

$$
t=\frac{288}{8}
$$

$$
=36 \mathrm{~s}
$$

8. $\sin \theta=\frac{28}{400}$

$$
\theta=4^{\circ}
$$

The plane should set a heading of $\mathrm{N} 4^{\circ} \mathrm{W}$ or $356^{\circ} \mathrm{T}$.
9. $\frac{\sin \theta}{28}=\frac{\sin 70^{\circ}}{300}$

$$
\begin{aligned}
\theta & =\sin ^{-1} \frac{28 \sin 70^{\circ}}{300} \\
& =5^{\circ}
\end{aligned}
$$

The plane should set a heading of $\mathrm{N} 5^{\circ} \mathrm{E}$ or $005^{\circ} \mathrm{T}$.

$$
\begin{aligned}
\angle \mathrm{ACB} & =360-100-140 \\
& =120^{\circ} \\
\frac{\sin \theta}{56} & =\frac{\sin 120^{\circ}}{350} \\
\theta & =\sin ^{-1} \frac{56 \sin 120^{\circ}}{350} \\
& =8^{\circ}
\end{aligned}
$$

The plane should fly on a bearing of 048°.

$$
\begin{aligned}
\angle \mathrm{ABC} & =180-120-8 \\
& =52^{\circ} \\
\frac{\mathrm{AC}}{\sin 52^{\circ}} & =\frac{350}{\sin 120^{\circ}} \\
\mathrm{AC} & =\frac{350 \sin 52^{\circ}}{\sin 120^{\circ}} \\
& =319 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Time required for the flight:

$$
t=\frac{500}{319} \times 60=94 \text { minutes }
$$

For the return flight:

$$
\begin{aligned}
\angle \mathrm{ACB} & =140-80 \\
& =60^{\circ} \\
\frac{\sin \theta}{56} & =\frac{\sin 60^{\circ}}{350} \\
\theta & =\sin ^{-1} \frac{56 \sin 60^{\circ}}{350} \\
& =8^{\circ}
\end{aligned}
$$

The plane should fly on a bearing of $180+(40-$ 8) $=212^{\circ}$.

$$
\begin{aligned}
\angle \mathrm{ABC} & =180-60-8 \\
& =112^{\circ} \\
\frac{\mathrm{AC}}{\sin 112^{\circ}} & =\frac{350}{\sin 60^{\circ}} \\
\mathrm{AC} & =\frac{350 \sin 112^{\circ}}{\sin 60^{\circ}} \\
& =374 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Time required for the return flight:

$$
t=\frac{500}{374} \times 60=80 \text { minutes }
$$

11.

$$
\begin{aligned}
2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\sin \angle C}{2} & =\frac{\sin 60^{\circ}}{6} \\
\angle C & =\sin ^{-1} \frac{2 \sin 60^{\circ}}{6} \\
& =16.8^{\circ} \\
\angle G & =180-60-16.8 \\
& =103.2^{\circ} \\
\frac{B C}{\sin 103.2^{\circ}} & =\frac{6}{\sin 60^{\circ}} \\
\mathrm{BC} & =\frac{6 \sin 103.2}{\sin 60^{\circ}} \\
& =6.7 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Perpendicular width of river:

$$
\begin{aligned}
w_{\mathrm{AB}} & =80 \sin 30^{\circ} \\
& =40 \mathrm{~m} \\
w_{\mathrm{BC}} & =110 \sin 20^{\circ} \\
& =37.6 \mathrm{~m} \\
w & =40+37.6 \\
& =77.6 \mathrm{~m} \\
\mathrm{CD} & =\frac{77.6}{\sin 60^{\circ}} \\
& =89.6 \mathrm{~m} \\
t_{\mathrm{CD}} & =\frac{89.6}{6.7} \\
& =13.29 \mathrm{~s}
\end{aligned}
$$

Total time:

$$
\begin{aligned}
t & =19.12+14.03+13.29 \\
& \approx 46 \mathrm{~s}
\end{aligned}
$$

Exercise 3D

No working is needed for questions 1-7. Refer to the answers in Sadler.
8.

(a) $\theta+30=180-70$

$$
\theta=80^{\circ}
$$

$|\mathbf{a}+\mathbf{b}|=\sqrt{5^{2}+4^{2}-2 \times 5 \times 4 \cos 80^{\circ}}$

$$
=5.8 \text { units }
$$

$$
\frac{\sin \alpha}{4}=\frac{\sin 80^{\circ}}{5.8}
$$

$$
\alpha=\sin ^{-1} \frac{4 \sin 80^{\circ}}{5.8}
$$

$$
=42^{\circ}
$$

$$
70-\alpha=28^{\circ}
$$

(b) $180-\theta=180-80$

$$
=100^{\circ}
$$

$$
|\mathbf{a}-\mathbf{b}|=\sqrt{5^{2}+4^{2}-2 \times 5 \times 4 \cos 100^{\circ}}
$$

$$
=6.9 \text { units }
$$

$$
\frac{\sin \beta}{4}=\frac{\sin 100^{\circ}}{6.9}
$$

$$
\beta=\sin ^{-1} \frac{4 \sin 100^{\circ}}{6.9}
$$

$$
=35^{\circ}
$$

$$
70+\beta=105^{\circ}
$$

9.

(a) $\quad \theta=360-260-(180-130)$

$$
=50^{\circ}
$$

$$
|2 \mathbf{e}+\mathbf{f}|=\sqrt{80^{2}+30^{2}-2 \times 80 \times 30 \cos 50^{\circ}}
$$

$$
=65 \text { units }
$$

$$
\frac{\sin \alpha}{30}=\frac{\sin 50^{\circ}}{65}
$$

$$
\alpha=\sin ^{-1} \frac{30 \sin 50^{\circ}}{65}
$$

$$
=21^{\circ}
$$

$$
130+\alpha=151^{\circ}
$$

(b) $180-\theta=180-50$

$$
=130^{\circ}
$$

$|\mathbf{e}-2 \mathbf{f}|=\sqrt{40^{2}+60^{2}-2 \times 40 \times 60 \cos 130^{\circ}}$ $=91$ units
$\frac{\sin \beta}{60}=\frac{\sin 130^{\circ}}{91}$
$\beta=\sin ^{-1} \frac{60 \sin 130^{\circ}}{91}$
$=30^{\circ}$
$130-\beta=100^{\circ}$
10.

$$
\begin{aligned}
|\mathbf{v}-\mathbf{u}| & =\sqrt{5.4^{2}+7.8^{2}} \\
& =9.5 \mathrm{~m} / \mathrm{s} \\
\tan \alpha & =\frac{5.4}{7.8} \\
\alpha & =\tan ^{-1} \frac{5.4}{7.8} \\
& =35^{\circ} \\
270-\alpha & =235^{\circ} \\
\mathbf{a} & =\frac{\mathbf{v}-\mathbf{u}}{t} \\
& =\frac{9.5 \angle 235^{\circ}}{5} \\
& =1.9 \mathrm{~m} / \mathrm{s}^{2} \text { on a bearing of } 235^{\circ}
\end{aligned}
$$

11.

$$
\begin{aligned}
& \theta=200-90 \\
& =110^{\circ} \\
& \begin{aligned}
|\mathbf{v}-\mathbf{u}| & =\sqrt{10.4^{2}+12.1^{2}-2 \times 10.4 \times 12.1 \cos 110^{\circ}} \\
& =18.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\sin \alpha}{10.4} & =\frac{\sin 110^{\circ}}{18.5} \\
\alpha & =\sin ^{-1} \frac{10.4 \sin 110^{\circ}}{18.5} \\
& =32^{\circ} \\
270-\alpha & =238^{\circ} \\
\mathbf{a} & =\frac{\mathbf{v}-\mathbf{u}}{t} \\
& =\frac{18.5 \angle 238^{\circ}}{4} \\
& =4.6 \mathrm{~m} / \mathrm{s}^{2} \text { on a bearing of } 238^{\circ}
\end{aligned}
$$

12. (a) $\lambda=\mu=0$
(b) $\lambda=\mu=0$
(c) $\lambda-3=0 \quad \mu+4=0$

$$
\lambda=3 \quad \mu=-4
$$

(d) $(\lambda-2) \mathbf{a}=(5-\mu) \mathbf{b}$

$$
\begin{array}{rlrl}
\lambda-2 & =0 & 5-\mu & =0 \\
\lambda & =2 & \mu & =5
\end{array}
$$

(e) $\lambda \mathbf{a}-2 \mathbf{b}=\mu \mathbf{b}+5 \mathbf{a}$

$$
\begin{array}{rlrl}
\lambda \mathbf{a}-5 \mathbf{a} & =\mu \mathbf{b}+2 \mathbf{b} & & \\
(\lambda-5) \mathbf{a} & =(\mu+2) \mathbf{b} & & \\
\lambda-5 & =0 & \mu+2=0 \\
\lambda & =5 & \mu=-2
\end{array}
$$

(f) $(\lambda+\mu-4) \mathbf{a}=(\mu-3 \lambda) \mathbf{b}$

$$
\begin{array}{rlrl}
\lambda+\mu-4 & =0 & \mu-3 \lambda & =0 \\
\mu & =4-\lambda & \mu & =3 \lambda \\
4-\lambda & =3 \lambda & \\
4 & =4 \lambda & \\
\lambda & =1 & \\
\mu & =3 \lambda & \\
\mu & =3 &
\end{array}
$$

(g) $2 \mathbf{a}+3 \mathbf{b}+\mu \mathbf{b}=2 \mathbf{b}+\lambda \mathbf{a}$

$$
\begin{array}{rlrl}
(2-\lambda) \mathbf{a} & =(2-3-\mu) \mathbf{b} & \\
2-\lambda & =0 & -1-\mu & =0 \\
\lambda & =2 & \mu & =-1
\end{array}
$$

(h) $\lambda \mathbf{a}+\mu \mathbf{b}+2 \lambda \mathbf{b}=5 \mathbf{a}+4 \mathbf{b}+\mu \mathbf{a}$

$$
\begin{aligned}
(\lambda-5-\mu) \mathbf{a} & =(4-\mu-2 \lambda) \mathbf{b} \\
\lambda-5-\mu & =0 \\
\mu & =\lambda-5 \\
4-\mu-2 \lambda & =0 \\
4-(\lambda-5)-2 \lambda & =0 \\
4-\lambda+5-2 \lambda & =0 \\
9-3 \lambda & =0 \\
\lambda & =3 \\
\mu & =\lambda-5 \\
\mu & =-2
\end{aligned}
$$

(i)

$$
\begin{aligned}
(\lambda-4-\mu) \mathbf{a} & =(-4 \lambda+1-\mu) \mathbf{b} \\
\lambda-4-\mu & =0 \\
\mu & =\lambda-4 \\
-4 \lambda+1-\mu & =0 \\
-4 \lambda+1-(\lambda-4) & =0 \\
-4 \lambda+1-\lambda+4 & =0 \\
-5 \lambda+5 & =0 \\
\lambda & =1 \\
\mu & =\lambda-4 \\
\mu & =-3
\end{aligned}
$$

(j) $2 \lambda \mathbf{a}+3 \mu \mathbf{a}-\mu \mathbf{b}+2 \mathbf{b}=\lambda \mathbf{b}+2 \mathbf{a}$

$$
\begin{aligned}
(2 \lambda+3 \mu-2) \mathbf{a} & =(\lambda+\mu-2) \mathbf{b} \\
2 \lambda+3 \mu-2 & =0 \\
\lambda+\mu-2 & =0 \\
2 \lambda+2 \mu-4 & =0 \\
\mu+2 & =0 \\
\mu & =-2 \\
\lambda+\mu-2 & =0 \\
\lambda-2-2 & =0 \\
\lambda & =4
\end{aligned}
$$

13.

(a) $\overrightarrow{\mathrm{CB}}=\mathbf{a}$
(b) $\overrightarrow{\mathrm{BC}}=-\overrightarrow{\mathrm{CB}}=-\mathbf{a}$
(c) $\overrightarrow{\mathrm{AB}}=\mathbf{c}$
(d) $\overrightarrow{\mathrm{BA}}=-\overrightarrow{\mathrm{AB}}=-\mathbf{c}$
(e) $\overrightarrow{\mathrm{AP}}=0.5 \overrightarrow{\mathrm{AB}}=0.5 \mathrm{c}$
(f) $\overrightarrow{\mathrm{OQ}}=\overrightarrow{\mathrm{OC}}+\overrightarrow{\mathrm{CQ}}$

$$
=\mathbf{c}+0.5 \mathbf{a}
$$

(g) $\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AP}}$

$$
=\mathbf{a}+0.5 \mathbf{c}
$$

(h) $\overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{PB}}+\overrightarrow{\mathrm{BQ}}$

$$
=0.5 \mathbf{c}-0.5 \mathbf{a}
$$

14.

(a) $\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OB}}=-\mathbf{a}+\mathbf{b}$
(b) $\overrightarrow{\mathrm{AC}}=0.75 \overrightarrow{\mathrm{AB}}=-0.75 \mathbf{a}+0.75 \mathbf{b}$
(c) $\overrightarrow{\mathrm{CB}}=0.25 \overrightarrow{\mathrm{AB}}=-0.25 \mathbf{a}+0.25 \mathbf{b}$
(d) $\overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AC}}$

$$
\begin{aligned}
& =\mathbf{a}-0.75 \mathbf{a}+0.75 \mathbf{b} \\
& =0.25 \mathbf{a}+0.75 \mathbf{b}
\end{aligned}
$$

15.

(a) $\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=\mathbf{a}+\mathbf{b}$
(b) $\overrightarrow{\mathrm{BE}}=\frac{1}{3} \overrightarrow{\mathrm{BC}}=\frac{1}{3} \mathbf{b}$
(c) $\overrightarrow{\mathrm{DF}}=\frac{1}{2} \overrightarrow{\mathrm{DC}}=\frac{1}{2} \mathbf{a}$
(d) $\overrightarrow{\mathrm{AE}}=\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BE}}=\mathbf{a}+\frac{1}{3} \mathbf{b}$
(e) $\overrightarrow{\mathrm{AF}}=\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{DF}}=\mathbf{b}+\frac{1}{2} \mathbf{a}$
(f) $\overrightarrow{\mathrm{BF}}=\overrightarrow{\mathrm{BA}}+\overrightarrow{\mathrm{AF}}$

$$
\begin{aligned}
& =-\mathbf{a}+\mathbf{b}+\frac{1}{2} \mathbf{a} \\
& =\mathbf{b}-\frac{1}{2} \mathbf{a}
\end{aligned}
$$

(g) $\overrightarrow{\mathrm{DE}}=\overrightarrow{\mathrm{DA}}+\overrightarrow{\mathrm{AE}}$

$$
\begin{aligned}
& =-\mathbf{b}+\mathbf{a}+\frac{1}{3} \mathbf{b} \\
& =\mathbf{a}-\frac{2}{3} \mathbf{b}
\end{aligned}
$$

(h) $\overrightarrow{\mathrm{EF}}=\overrightarrow{\mathrm{EA}}+\overrightarrow{\mathrm{AF}}$

$$
\begin{aligned}
& =-\overrightarrow{\mathrm{AE}}+\overrightarrow{\mathrm{AF}} \\
& =-\left(\mathbf{a}+\frac{1}{3} \mathbf{b}\right)+\mathbf{b}+\frac{1}{2} \mathbf{a} \\
& =-\frac{1}{2} \mathbf{a}+\frac{2}{3} \mathbf{b}
\end{aligned}
$$

16.

(a) $\overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AB}}=\mathbf{a}+\mathbf{b}$
(b) $\overrightarrow{\mathrm{OC}}=2 \overrightarrow{\mathrm{AB}}=2 \mathbf{b}$
(c) $\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{BA}}+\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OC}}$

$$
\begin{aligned}
& =-\overrightarrow{\mathrm{AB}}-\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OC}} \\
& =-\mathbf{b}-\mathbf{a}+2 \mathbf{b} \\
& =-\mathbf{a}+\mathbf{b}
\end{aligned}
$$

(d) $\overrightarrow{\mathrm{BD}}=0.5 \overrightarrow{\mathrm{BC}}=-0.5 \mathbf{a}+0.5 \mathbf{b}$
(e) $\overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{BD}}$

$$
\begin{aligned}
& =\mathbf{a}+\mathbf{b}-0.5 \mathbf{a}+0.5 \mathbf{b} \\
& =0.5 \mathbf{a}+1.5 \mathbf{b}
\end{aligned}
$$

17. (a) $\overrightarrow{\mathrm{OC}}=0.5 \overrightarrow{\mathrm{OA}}=0.5 \mathrm{a}$
(b) $\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OB}}=-\mathbf{a}+\mathbf{b}$
(c) $\overrightarrow{\mathrm{AD}}=\frac{2}{3} \overrightarrow{\mathrm{AB}}=-\frac{2}{3} \mathbf{a}+\frac{2}{3} \mathbf{b}$
(d) $\overrightarrow{\mathrm{CD}}=\overrightarrow{\mathrm{CA}}+\overrightarrow{\mathrm{AD}}$

$$
\begin{aligned}
& =\frac{1}{2} \mathbf{a}+\left(-\frac{2}{3} \mathbf{a}+\frac{2}{3} \mathbf{b}\right) \\
& =-\frac{1}{6} \mathbf{a}+\frac{2}{3} \mathbf{b}
\end{aligned}
$$

(e)

$$
\begin{aligned}
\overrightarrow{\mathrm{OC}}+\overrightarrow{\mathrm{CE}} & =\overrightarrow{\mathrm{OE}} \\
\overrightarrow{\mathrm{OC}}+h \overrightarrow{\mathrm{CD}} & =k \overrightarrow{\mathrm{OB}} \\
\frac{1}{2} \mathbf{a}+h\left(-\frac{1}{6} \mathbf{a}+\frac{2}{3} \mathbf{b}\right) & =k \mathbf{b} \\
\left(\frac{1}{2}-\frac{h}{6}\right) \mathbf{a} & =\left(k-\frac{2 h}{3}\right) \mathbf{b} \\
\frac{1}{2}-\frac{h}{6} & =0 \\
3-h & =0 \\
h & =3 \\
k-\frac{2 h}{3} & =0 \\
k & =\frac{2 h}{3} \\
& =\frac{2 \times 3}{3} \\
& =2
\end{aligned}
$$

18.

$$
\begin{aligned}
\overrightarrow{\mathrm{OD}} & =\overrightarrow{\mathrm{OC}}+\overrightarrow{\mathrm{CD}} \\
& =\mathbf{c}+\frac{2}{3} \overrightarrow{\mathrm{CB}} \\
& =\mathbf{c}+\frac{2}{3}(\overrightarrow{\mathrm{CO}}+\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AB}}) \\
& =\mathbf{c}+\frac{2}{3}(-\mathbf{c}+\mathbf{a}+2 \mathbf{c}) \\
& =\mathbf{c}+\frac{2}{3}(\mathbf{a}+\mathbf{c}) \\
& =\frac{2}{3} \mathbf{a}+\frac{5}{3} \mathbf{c} \\
\overrightarrow{\mathrm{OE}} & =\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AE}} \\
h \overrightarrow{\mathrm{OD}} & =\overrightarrow{\mathrm{OA}}+k \overrightarrow{\mathrm{AB}} \\
h\left(\frac{2}{3} \mathbf{a}+\frac{5}{3} \mathbf{c}\right) & =\mathbf{a}+2 k \mathbf{c} \\
\frac{2 h}{3} \mathbf{a}+\frac{5 h}{3} \mathbf{c} & =\mathbf{a}+2 k \mathbf{c} \\
\left(\frac{2 h}{3}-1\right) \mathbf{a} & =\left(2 k-\frac{5 h}{3}\right) \mathbf{c}
\end{aligned}
$$

Miscellaneous Exercise 3

1. (a) Graphically:

$$
-4 \leq x \leq 2
$$

Algebraically:
First solve $|2 x-1|=|x-5|$

$$
\begin{aligned}
& 2 x-1=x-5 \quad \text { or } \quad-(2 x-1)=x-5 \\
& x=-4 \quad-2 x+1=x-5 \\
& -3 x=-4 \\
& x=2
\end{aligned}
$$

$$
\begin{aligned}
\frac{2 h}{3}-1 & =0 \\
\frac{2 h}{3} & =1 \\
2 h & =3 \\
h & =\frac{3}{2} \\
2 k-\frac{5 h}{3} & =0 \\
2 k & =\frac{5 h}{3} \\
k & =\frac{5 h}{6} \\
& =\frac{5}{6} \times \frac{3}{2} \\
& =\frac{5}{4}
\end{aligned}
$$

Now test one of the three intervals delimited by these two solutions. Try a value, say $x=0$:
Is it true that $|5(0)-1| \leq|(0)-5|$?
Yes $(1 \leq 5)$.

Solution set is

$$
\{x \in \mathbb{R}:-4 \leq x \leq 2\}
$$

(b) This is the complementary case to the previous question, so it has the complementary solution:

$$
\{x \in \mathbb{R}: x<-4\} \cup\{x \in \mathbb{R}: x>2\}
$$

(c) Graphically:

$$
x \geq 3
$$

Algebraically:
First solve $|x-10|=2 x+1$

$$
\begin{array}{rlrl}
x-10=2 x+1 & \text { or } & -(x-10) & =2 x+1 \\
x=-11 & -x+10 & =2 x+1 \\
-3 x & =-9 \\
x & =3
\end{array}
$$

However, $x=-11$ is not actually a solution, as you can see by substituting into the equation, so we are left with two intervals (either side of $x=3$).
Now test one of these intervals delimited by these two solutions. Try a value, say $x=0$: Is it true that $|(0)-10| \leq 2(0)+1$?
No ($10 \not \leq 1$).
Solution set is

$$
\{x \in \mathbb{R}: x \geq 3\}
$$

2.

$$
\begin{aligned}
\theta & =369-190-(180-60) \\
& =50^{\circ} \\
d & =\sqrt{2.4^{2}+4.4^{2}-2 \times 2.4 \times 4.4 \cos 50^{\circ}} \\
& =3.4 \mathrm{~km}
\end{aligned}
$$

It's tempting to find angle α using the sine rule, but because it's opposite the longest side of the triangle, it could be either acute or obtuse: it's the ambiguous case. Finding β instead is unambiguous. β can not be obtuse because it is opposite a shorter side.

$$
\begin{aligned}
\frac{\sin \beta}{2.4} & =\frac{\sin 50^{\circ}}{3.4} \\
\beta & =\sin ^{-1} \frac{2.4 \sin 50^{\circ}}{3.4} \\
& =33^{\circ} \\
\text { bearing } & =190+(180-33) \\
& =327^{\circ}
\end{aligned}
$$

3.

$|x-5|+|x+5| \leq 14$ for $\{x \in \mathbb{R}:-7 \leq x \leq 7\}$
4.

In each case below, let θ be the angle formed between \mathbf{c} and the resultant.
(a) $|\mathbf{c}+\mathbf{d}|=\sqrt{10^{2}+12^{2}-2 \times 10 \times 12 \cos 110^{\circ}}$ $=18.1$ units

$$
\begin{aligned}
\frac{\sin \theta}{12} & =\frac{\sin 110^{\circ}}{18.1} \\
\theta & =\sin ^{-1} \frac{12 \sin 110^{\circ}}{18.1} \\
& =39^{\circ} \\
\text { direction } & =160-39 \\
& =121^{\circ}
\end{aligned}
$$

(b) $|\mathbf{c}-\mathbf{d}|=\sqrt{10^{2}+12^{2}-2 \times 10 \times 12 \cos 70^{\circ}}$

$$
=12.7 \text { units }
$$

$$
\begin{aligned}
\frac{\sin \theta}{12} & =\frac{\sin 70^{\circ}}{12.7} \\
\theta & =\sin ^{-1} \frac{12 \sin 70^{\circ}}{12.7} \\
& =62^{\circ} \\
\text { direction } & =160+62 \\
& =222^{\circ}
\end{aligned}
$$

(c) $|\mathbf{c}+2 \mathbf{d}|=\sqrt{10^{2}+24^{2}-2 \times 10 \times 24 \cos 110^{\circ}}$

$$
=29.0 \text { units }
$$

$$
\begin{aligned}
\frac{\sin \theta}{24} & =\frac{\sin 110^{\circ}}{29.0} \\
\theta & =\sin ^{-1} \frac{24 \sin 110^{\circ}}{29.0} \\
& =51^{\circ} \\
\text { direction } & =160-51 \\
& =109^{\circ}
\end{aligned}
$$

5. First, rearrange the equation to

$$
|x-a|+|x+3|=5
$$

and read this as "distance from a plus distance from -3 is equal to 5 ".

- If the distance between a and -3 is greater than 5 then the equation has no solution.
- If the distance between a and -3 is equal to 5 then every point between a and -3 is a solution.
- If the distance between a and -3 is less than 5 then there will be two solutions, one lying above the interval between -3 and a and one lying below it.
(a) For exactly two solutions,

$$
\begin{gathered}
|a+3|<5 \\
-5<a+3<5 \\
-8<a<2
\end{gathered}
$$

(b) For more than two solutions,

$$
\begin{array}{rlrlrl}
|a+3| & =5 & & \\
a+3 & =5 & \text { or } & a+3 & =-5 \\
a & =2 & & a & =-8
\end{array}
$$

6. Let l be the length of the ladder.

$$
\begin{aligned}
& \text {, } \\
& \cos 80^{\circ}=\frac{a}{l} \\
& a=l \cos 80^{\circ} \\
& \cos 75^{\circ}=\frac{a+20}{l} \\
& a+20=l \cos 75^{\circ} \\
& a=l \cos \left(75^{\circ}\right)-20 \\
& l \cos 80^{\circ}=l \cos \left(75^{\circ}\right)-20 \\
& l \cos \left(75^{\circ}\right)-l \cos 80^{\circ}=20 \\
& l\left(\cos \left(75^{\circ}\right)-\cos 80^{\circ}\right)=20 \\
& \begin{aligned}
l & =\frac{20}{\cos \left(75^{\circ}\right)-\cos 80^{\circ}} \\
& =235 \mathrm{~cm} \\
a & =l \cos 80^{\circ} \\
& =41 \mathrm{~cm}
\end{aligned}
\end{aligned}
$$

7. (a) $h=k=0$
(b) $h \mathbf{a}+\mathbf{b}=k \mathbf{b}$

$$
\begin{array}{rlr}
h \mathbf{a} & =k \mathbf{b}-\mathbf{b} & \\
& =(k-1) \mathbf{b} & \\
h & =0 & k-1=0 \\
& k=1
\end{array}
$$

(c) $(h-3) \mathbf{a}=(k+1) \mathbf{b}$

$$
\begin{array}{rlrl}
h-3 & =0 & k+1 & =0 \\
h & =3 & k & =-1
\end{array}
$$

(d) $h \mathbf{a}+2 \mathbf{a}=k \mathbf{b}-3 \mathbf{a}$
$h \mathbf{a}+5 \mathbf{a}=k \mathbf{b}$
$(h+5) \mathbf{a}=k \mathbf{b}$

$$
\begin{aligned}
h+5 & =0 \quad k=0 \\
h & =-5
\end{aligned}
$$

(e) $3 h \mathbf{a}+k \mathbf{a}+h \mathbf{b}-2 k \mathbf{b}=\mathbf{a}+5 \mathbf{b}$

$$
\begin{array}{rr}
3 h \mathbf{a}+k \mathbf{a}-\mathbf{a}=5 \mathbf{b}-h \mathbf{b}+2 k \mathbf{b} \\
(3 h+k-1) \mathbf{a}= & (5-h+2 k) \mathbf{b} \\
3 h+k-1=0 & 5-h+2 k=0 \\
3 h+k=1 & h-2 k=5 \\
h=1 & \\
k=-2 &
\end{array}
$$

(Note: the final step in the solution above is done by solving the simultaneous equations $3 h+k=1$ and $h-2 k=5$. You should be familiar with doing this by elimination or substitution. (Either would be suitable here.) You should also know how to do it on the ClassPad:

mtheabc cat $20 \times$ x			
듬			
x^{\square} $e^{\text {a }}$ $\log _{\square}^{\square}$		4 5 6	\times
		123	
		0.	ans
CALC	ADV	VAR	EXE
	al	Real Rad	

In the Main application, select the simultaneous equations icon in the 2D tab. Enter the two equations to the left of the vertical bar, and the two variables to the right:

$$
\left\{\left.\begin{array}{l}
3 \boldsymbol{h}+\boldsymbol{k}=1 \\
\boldsymbol{h}-2 \boldsymbol{k}=5
\end{array}\right|_{\boldsymbol{h}, \boldsymbol{k}}\right.
$$

$$
\{h=1, k=-2\}
$$

口

(f) $h(\mathbf{a}+\mathbf{b})+k(\mathbf{a}-\mathbf{b})=3 \mathbf{a}+5 \mathbf{b}$

$$
\begin{array}{rr}
(h+k) \mathbf{a}+(h-k) \mathbf{b}=3 \mathbf{a}+5 \mathbf{b} \\
(h+k-3) \mathbf{a}=-(h-k-5) \mathbf{b} \\
h+k-3=0 & h-k-5=0 \\
h+k=3 & h-k=5
\end{array}
$$

solving by elimination:

$$
\begin{aligned}
2 h & =8 \\
h & =4 \\
4+k & =3 \\
k & =-1
\end{aligned}
$$

Let the height of the tree be h. Let A be the point at the base of the tree and B the point at the apex.

$$
\begin{aligned}
\tan 28^{\circ} & =\frac{h}{\mathrm{AC}} \\
\mathrm{AC} & =\frac{h}{\tan 28^{\circ}} \\
\tan 20^{\circ} & =\frac{h}{\mathrm{AD}} \\
\mathrm{AD} & =\frac{h}{\tan 20^{\circ}}
\end{aligned}
$$

$\triangle \mathrm{ACD}$ is right-angled at C , so

$$
\begin{aligned}
\mathrm{AD}^{2} & =\mathrm{AC}^{2}+\mathrm{CD}^{2} \\
\frac{h^{2}}{\tan ^{2} 20^{\circ}} & =\frac{h^{2}}{\tan ^{2} 28^{\circ}}+65^{2} \\
h^{2}\left(\frac{1}{\tan ^{2} 20^{\circ}}-\frac{1}{\tan ^{2} 28^{\circ}}\right) & =65^{2}
\end{aligned}
$$

Solving this and discarding the negative root:

$$
\begin{aligned}
h & =32.5 \mathrm{~m} \\
\mathrm{AC} & =\frac{h}{\tan 28^{\circ}} \\
& =61.0 \mathrm{~m}
\end{aligned}
$$

