Chapter 1

Exercise 1A

 $x=3$ or $x=7$
2.

3. $\underset{-10}{ }$ $x=-6$ or $x=-2$
4.

$x=-8$ or $x=2$
5.
 $x=4$
6.
 $x=3$
7. $x+3=7 \quad$ or

$$
x+3=-7
$$

$$
x=4
$$

$$
x=-10
$$

8. $x-3=5$
or

$$
x-3=-5
$$

$$
x=8
$$

$$
x=-2
$$

9. No solution (absolute value can never be negative).
10. $x-2=11 \quad$ or $\quad x-2=-11$

$$
x=13 \quad x=-9
$$

11. $2 x+3=7$
or
$2 x+3=-7$
$2 x=4$
$2 x=-10$

$$
x=2
$$

$$
x=-5
$$

12. $5 x-8=$
or $\quad 5 x-8=-7$

$$
\begin{aligned}
5 x & =15 \\
x & =3
\end{aligned}
$$

$$
5 x=1
$$

$$
x=\frac{1}{5}
$$

13. Find the appropriate intersection and read the x-coordinate.
(a) Intersections at $(3,4)$ and $(7,4)$ so $x=3$ or $x=7$.
(b) Intersections at $(-2,4)$ and $(6,4)$ so $x=-2$ or $x=6$.
(c) Intersections at $(4,2)$ and $(8,6)$ so $x=4$ or $x=8$.
14.

(a) Intersections at $(-4,5)$ and $(1,5)$ so $x=-4$ or $x=1$.
(b) Intersections at $(-6,6)$ and $(2,2)$ so $x=-6$ or $x=2$.
(c) Intersections at $(-4,5)$ and $(0,3)$ so $x=-4$ or $x=0$.
(d) Intersections at $(-3,3)$ and $(-1,1)$ so $x=-3$ or $x=-1$.
15.

$$
x=-7 \text { or } x=-5
$$

16. No solution (absolute value can never be negative).
17.

 $x=-5.5$
18.
 $x=-3$
19.

20.

$x=2$

$x=-3.5$
22.

23. $x+5=2 x-14$

$$
x=19
$$

$$
|19+5|=|2 \times 19-14|
$$

$$
|24|=|24|
$$

or

$$
\begin{aligned}
x+5 & =-(2 x-14) \\
x+5 & =-2 x+14 \\
3 x & =9 \\
x & =3 \\
|3+5| & =|2 \times 3-14| \\
|8| & =|-8| \quad \checkmark
\end{aligned}
$$

24. $3 x-1=x+9$

$$
\begin{aligned}
2 x & =10 \\
x & =5
\end{aligned}
$$

$$
\begin{aligned}
|3 \times 5-1| & =|5+9| \\
|14| & =|14| \quad \checkmark
\end{aligned}
$$

or

$$
\begin{aligned}
-(3 x-1) & =x+9 \\
-3 x+1 & =x+9 \\
-4 x & =8 \\
x & =-2
\end{aligned}
$$

$$
\begin{aligned}
|3 \times-2-1| & =|-2+9| \\
|-7| & =|7| \quad \checkmark
\end{aligned}
$$

25. $4 x-3=3 x-11$

$$
x=-8
$$

$$
\begin{aligned}
|4 \times-8-3| & =|3 \times-8-11| \\
|-35| & =|-35| \quad \checkmark
\end{aligned}
$$

or

$$
\begin{aligned}
4 x-3 & =-(3 x-11) \\
4 x-3 & =-3 x+11 \\
7 x & =14 \\
x & =2
\end{aligned}
$$

$|4 \times 2-3|=|3 \times 2-11|$

$$
|5|=|-5| \quad \checkmark
$$

26. $5 x-11=5-3 x$

$$
\begin{aligned}
8 x & =16 \\
x & =2
\end{aligned}
$$

$$
|5 \times 2-11|=|5-3 \times 2|
$$

$$
|-1|=|-1|
$$

or

$$
\begin{aligned}
-(5 x-11) & =5-3 x \\
-5 x+11 & =5-3 x \\
6 & =2 x \\
x & =3
\end{aligned}
$$

$$
|5 \times 3-11|=|5-3 \times 3|
$$

$$
|4|=|-4| \quad \checkmark
$$

27. $x-2=2 x-6$

$$
\begin{aligned}
-x & =-4 \\
x & =4
\end{aligned}
$$

$$
|4-2|=2 \times 4-6
$$

$$
|2|=2 \quad \checkmark
$$

or

$$
\begin{aligned}
-(x-2) & =2 x-6 \\
-x+2 & =2 x-6 \\
-3 x & =-8 \\
x & =\frac{8}{3} \\
\left|\frac{8}{3}-2\right| & =2 \times \frac{8}{3}-6 \\
\left|\frac{2}{3}\right| & \neq-\frac{2}{3}
\end{aligned}
$$

The second 'solution' is not valid. The only solution is $x=4$.
28. $x-3=2 x$

$$
\begin{aligned}
x & =-3 \\
|-3-3| & =2 \times-3 \\
|-6| & \neq-6
\end{aligned}
$$

or

$$
\begin{aligned}
-(x-3) & =2 x \\
-x+3 & =2 x \\
-3 x & =-3 \\
x & =1 \\
|1-3| & =2 \times 1 \\
|-2| & =2
\end{aligned}
$$

The first 'solution' is not valid. The only solution is $x=1$.
29. $x-2=0.5 x+1$

$$
\begin{aligned}
0.5 x & =3 \\
x=6 & \\
|6|-2 & =0.5 \times 6+1 \\
4 & =4
\end{aligned}
$$

or

$$
\begin{aligned}
-x-2 & =0.5 x+1 \\
-1.5 x & =3 \\
x & =-2 \\
|-2|-2 & =0.5 \times-2+1 \\
0 & =0 \quad \checkmark .
\end{aligned}
$$

30. $x+2=-3 x+6$

$$
\begin{aligned}
4 x & =4 \\
x & =1
\end{aligned}
$$

$$
\begin{aligned}
|1+2| & =-3 \times 1+6 \\
|3| & =3 \quad \checkmark
\end{aligned}
$$

or

$$
\begin{aligned}
-(x+2) & =-3 x+6 \\
-x-2 & =-3 x+6 \\
2 x & =8 \\
x & =4 \\
|4+2| & =-3 \times 4+6 \\
|6| & \neq 3-6
\end{aligned}
$$

The second solution is invalid. The only solution is $x=1$.
31. $x \geq 1$:

$$
\begin{aligned}
x+5+x-1 & =7 \\
2 x+4 & =7 \\
2 x & =3 \\
x & =1.5 \quad \checkmark
\end{aligned}
$$

$-5 \leq x \leq 1$:

$$
\begin{aligned}
x+5-(x-1) & =7 \\
x+5-x+1 & =7 \\
6 & \neq 7 \quad \Longrightarrow \text { no sol'n }
\end{aligned}
$$

$x \leq-5$:

$$
\begin{aligned}
-(x+5)-(x-1) & =7 \\
-x-5-x+1 & =7 \\
-2 x-4 & =7 \\
-2 x & =11 \\
x & =-5.5
\end{aligned}
$$

32. $x \geq 4$:

$$
\begin{aligned}
x+3+x-4 & =2 \\
2 x-1 & =2 \\
2 x & =3 \\
x & =1.5 \\
& \Longrightarrow \text { no sol'n (out of domain) }
\end{aligned}
$$

$-3 \leq x \leq 4:$

$$
\begin{aligned}
x+3-(x-4) & =2 \\
x+3-x+4 & =2 \\
7 & \neq 2 \quad \Longrightarrow \text { no sol'n }
\end{aligned}
$$

$x \leq-3:$

$$
\begin{aligned}
-(x+3)-(x-4) & =2 \\
-x-3-x+4 & =2 \\
-2 x+1 & =2 \\
-2 x & =1 \\
x & =-0.5 \\
& \Longrightarrow \text { no sol'n (out of domain) }
\end{aligned}
$$

The equation has no solution.
33. $x \geq 3$:

$$
\begin{aligned}
x+5+x-3 & =8 \\
2 x+2 & =8 \\
2 x & =6 \\
x & =3
\end{aligned}
$$

$-5 \leq x \leq 3:$

$$
\begin{array}{r}
x+5-(x-3)=8 \\
x+5-x+3=8 \\
8=8
\end{array}
$$

\Longrightarrow all of $-5 \leq x \leq 3$ is a solution.
$x \leq-5$:

$$
\begin{aligned}
-(x+5)-(x-3) & =8 \\
-x-5-x+3 & =8 \\
-2 x-2 & =8 \\
-2 x & =10 \\
x & =-5
\end{aligned}
$$

Solution is $-5 \leq x \leq 3$.
34. $x \geq 8$:

$$
\begin{aligned}
x-8 & =-(2-x)-6 \\
x-8 & =-2+x-6 \\
-8 & =-8
\end{aligned}
$$

\Longrightarrow all of $x \geq 8$ is a solution.
$2 \leq x \leq 8:$

$$
\begin{aligned}
-(x-8) & =-(2-x)-6 \\
-x+8 & =-2+x-6 \\
2 x & =16 \\
x & =8
\end{aligned}
$$

$x \leq 2$:

$$
\begin{aligned}
-(x-8) & =2-x-6 \\
-x+8 & =-x-4 \\
8 & \neq-4 \quad \Longrightarrow \text { no sol'n }
\end{aligned}
$$

Solution is $x \geq 8$.

Exercise 1B

$-2<x<2$
2.

$$
-5 \leq x \leq 5
$$

3.

$x<-7$ or $x>7$
4.

$$
x<-1 \text { or } x>5
$$

5.

$$
-7 \leq x \leq 1
$$

6.

Algebraically:
For $5 x-3 \geq 0$:

$$
\text { For } 5 x-3 \leq 0
$$

$$
\begin{aligned}
5 x-3 & <7 \\
5 x & <10
\end{aligned}
$$

$$
-(5 x-3)<\overline{7}
$$

$$
5 x-3>-7
$$

$$
x<5
$$

$$
5 x>-4
$$

$$
x>-\frac{4}{5}
$$

$$
-\frac{4}{5}<x<2
$$

7.

Algebraically:
For $2 x-3 \geq 0$:
For $2 x-3 \leq 0$:
$2 x-3>5$
$2 x>8$

$$
2 x-3<-5
$$

$x>4$

$$
-(2 x-3)>5
$$

$$
2 x<-2
$$

$$
x<-1
$$

$$
x<-1 \text { or } x>4
$$

Algebraically:

For $5-2 x \geq 0$:

$$
\text { For } 5-2 x \leq 0 \text { : }
$$

$$
\begin{array}{rlrl}
5-2 x & \leq 11 & -(5-2 x) & \leq 11 \\
-2 x & \leq 6 & -5+2 x & \leq 11 \\
x & \geq-3 & 2 x & \leq 16 \\
& x & \leq 8
\end{array}
$$

$$
-3 \leq x \leq 8
$$

9. Centred on 0 , no more than 3 units from centre: $|x| \leq 3$
10. Centred on 0 , less than 4 units from centre: $|x|<4$
11. Centred on 0 , at least 1 unit from centre: $|x| \geq 1$
12. Centred on 0 , more than 2 units from centre: $|x|>2$
13. Centred on 0 , no more than 4 units from centre: $|x| \leq 4$
14. Centred on 0 , at least 3 units from centre: $|x| \geq 3$
15. Distance from 3 is greater than distance from 7. Distance is equal at $x=5$ so possible values are $\{x \in \mathbb{R}: x>5\}$.
16. Distance from 1 is less than or equal to distance from 8. Distance is equal at $x=4.5$ so possible values are $\{x \in \mathbb{R}: x \leq 4.5\}$.
17. Distance from -2 is less than distance from 2 . Distance is equal at $x=0$ so possible values are $\{x \in \mathbb{R}: x<0\}$.
18. Distance from 5 is greater than or equal to distance from -1 . Distance is equal at $x=2$ so possible values are $\{x \in \mathbb{R}: x \leq 2\}$.
19. Distance from 13 is greater than distance from 5. (Note $|5-x|=|x-5|$.) Distance is equal at $x=9$ so possible values are $\{x \in \mathbb{R}: x<9\}$.
20. Distance from -12 is greater than or equal to distance from 2. Distance is equal at $x=-5$ so possible values are $\{x \in \mathbb{R}: x \geq-5\}$.
21. Centred on 2, no more than 3 units from centre: $|x-2| \leq 3$
22. Centred on 3 , less than 1 unit from centre: $|x-3|<1$
23. Centred on 2 , at least 2 units from centre: $|x-2| \geq 2$
24. Centred on 1, more than 2 units from centre: $|x-1|>2$
25. Centred on 1, no more than 4 units from centre: $|x-1| \leq 4$
26. Centred on 1 , at least 4 units from centre: $|x-1| \geq 4$
27.

$$
x \leq-5 \text { or } x \geq 5
$$

28. For $2 x>0$:

$$
2 x<8
$$

For $2 x<0$:
$x<4$
$-2 x<8$
$2 x>-8$
$x>-4$

$$
-4<x<4
$$

29. $|x|>-3$ is true for all x (since the absolute value is always positive).
30. Distance from 3 is greater than or equal to distance from -5 . Distance is equal at -1 so $x \leq-1$.

Algebraically:
First solve $|x+1|=|2 x+5|$

$$
\begin{array}{rlrl}
x+1 & =2 x+5 \quad \text { or } \quad-(x+1) & =2 x+5 \\
x=-4 & & -x-1 & =2 x+5 \\
-6 & =3 x \\
x & =-2
\end{array}
$$

Now consider the three intervals delimited by these two solutions.

- $x<-4$

Try a value, say -5 :
Is it true that $|-5+1| \leq|2(-5)+5|$?
Yes $(4 \leq 5)$.

- $-4<x<-2$

Try a value, say -3 :
Is it true that $|-3+1| \leq|2(-3)+5|$?
No ($2 \not \leq 1$).

- $x>-2$

Try a value, say 0 :
Is it true that $|0+1| \leq|2(0)+5|$?
Yes $(1 \leq 5)$.
Solution set is

$$
\{x \in \mathbb{R}: x \leq-4\} \cup\{x \in \mathbb{R}: x \geq-2\}
$$

32. No solution (absolute value can not be negative.)
33. First solve $|5 x+1|=|3 x+9|$

$$
\begin{aligned}
& 5 x+1=3 x+9 \quad \text { or } \quad-(5 x+1)=3 x+9 \\
& 2 x=8 \quad-5 x-1=3 x+9 \\
& x=4 \\
& -10=8 x \\
& x=-1.25
\end{aligned}
$$

Now consider the three intervals delimited by these two solutions.

- $x<-1.25$

Try a value, say -2 :
Is it true that $|5(-2)+1|>|3(-2)+9|$?
Yes $(9>3)$.

- $-1.25<x<4$

Try a value, say 0 :
Is it true that $|5(0)+1|>|3(0)+9|$?
No $(1 \ngtr 9)$.

- $x>4$

Try a value, say 5 :
Is it true that $|5(5)+1|>|3(5)+9|$? Yes $(26>24)$.

Solution set is

$$
\{x \in \mathbb{R}: x<-1.25\} \cup\{x \in \mathbb{R}: x>4\}
$$

34. First solve $|2 x+5|=|3 x-1|$

$$
\begin{array}{rlrl}
2 x+5 & =3 x-1 & \text { or } & -(2 x+5) \\
x=6 & & 3 x-1 \\
-2 x-5 & =3 x-1 \\
-4 & =5 x \\
x & & =-0.8
\end{array}
$$

Now consider the three intervals delimited by these two solutions.

- $x<-0.8$

Try a value, say -2 :
Is it true that $|2(-2)+5| \geq|3(-2)-1|$?
No ($1 \nsupseteq 7$).

- $-0.8<x<6$

Try a value, say 0 :
Is it true that $|2(0)+5| \geq|3(0)-1|$?
Yes $(5 \geq-1)$.

- $x>6$

Try a value, say 7 :
Is it true that $|2(7)+5| \geq|3(7)-1|$?
No (19 $\ngtr 20)$.
Solution set is

$$
\{x \in \mathbb{R}:-0.8 \leq x \leq 6\}
$$

Actually we only need to test one of the three intervals. At each of the two initial solutions we have lines crossing so if the LHS $<$ RHS on one side of the intersection it follows that LHS $>$ RHS on the other side, and vice versa. We'll use this in the next questions.
35. First solve $|6 x+1|=|2 x+5|$

$$
\begin{array}{rlrl}
6 x+1 & =2 x+5 & \text { or } & -(6 x+1) \\
4 x & =4 & & 2 x+5 \\
x & =1 & -6 x-1 & =2 x+5 \\
-8 x & =6 \\
x & & & =-0.75
\end{array}
$$

Now test one of the three intervals delimited by these two solutions.

- $x<-0.75$

Try a value, say -1 :
Is it true that $|6(-1)+1| \leq|2(-1)+5|$? No ($5 \not \leq 3$).

Solution set is

$$
\{x \in \mathbb{R}:-0.75 \leq x \leq 1\}
$$

36. First solve $|3 x+7|=|2 x-4|$

$$
\begin{array}{rlrl}
3 x+7 & =2 x-4 & \text { or } & -(3 x+7) \\
x=-11 & & 2 x-4 \\
-3 x-7 & =2 x-4 \\
-5 x & =3 \\
x & =-0.6
\end{array}
$$

Now test one of the three intervals delimited by these two solutions.

- $x<-11$

Try a value, say -12 :
Is it true that $|3(-12)+7|>|2(-12)-4|$? Yes $(29>28)$.

Solution set is

$$
\{x \in \mathbb{R}: x<-11\} \cup\{x \in \mathbb{R}: x>-0.6\}
$$

37. This is true for all $x \in \mathbb{R}$ since the absolute value is never negative, and hence always greater than -5 .
38. First solve $|x-1|=|2 x+7|$

$$
\begin{array}{rlrl}
x-1 & =2 x+7 & \text { or } & -(x-1) \\
x=-8 & & 2 x+7 \\
x+1 & =2 x+7 \\
-3 x & =6 \\
x & =-2
\end{array}
$$

Now test one of the three intervals delimited by these two solutions.

- $x<-8$

Try a value, say -10 :
Is it true that $|-10-1| \leq|2(-10)+7|$?
Yes $(11 \leq 13)$.
Solution set is

$$
\{x \in \mathbb{R}: x<-8\} \cup\{x \in \mathbb{R}: x>-2\}
$$

39. Distance from 11 is greater than or equal to distance from -5.3 is equidistant, so $x \leq 3$
40. First solve $|3 x+7|=|7-2 x|$

$$
\begin{aligned}
& 3 x+7=7-2 x \quad \text { or } \quad-(3 x+7)=7-2 x \\
& 5 x=0 \quad-3 x-7=7-2 x \\
& x=0 \\
& -x=14 \\
& x=-14
\end{aligned}
$$

Now test one of the three intervals delimited by these two solutions.

- $x<-14$

Try a value, say -20 :
Is it true that $|3(-20)+7|>|7-2(-20)|$?
Yes $(53>47)$.

Solution set is

$$
\{x \in \mathbb{R}: x<-14\} \cup\{x \in \mathbb{R}: x>0\}
$$

41. No solution (LHS $=$ RHS $\forall x \in \mathbb{R}$)
42. True for all $x($ LHS $=$ RHS $\forall x \in \mathbb{R})$
43. We can rewrite this as $3|x+1| \leq|x+1|$ which can only be true at $x+1=0$, i.e. $x=-1$.
44. We can rewrite this as $2|x-3|<5|x-3|$ which simplifies to $2<5$ for all $x \neq 3$, so the solution set is

$$
\{x \in \mathbb{R}: x \neq 3\}
$$

45. First solve $x=|2 x-6|$

$$
\begin{aligned}
& x=2 x-6 \quad \text { or } \quad x=-(2 x-6) \\
& x=6 \quad x=-2 x+6 \\
& 3 x=6 \\
& x=2
\end{aligned}
$$

Now test one of the three intervals delimited by these two solutions.

- $x<2$

Try a value, say 0 :
Is it true that $0>|2(0)-6|$?
No $(0 \ngtr 6)$.
Solution set is

$$
\{x \in \mathbb{R}: 2<x<6\}
$$

46. First solve $|x-3|=2 x$

$$
\begin{array}{rlrl}
x-3 & =2 x & \text { or } \quad-(x-3) & =2 x \\
x=-3 & & -x+3 & =2 x \\
3 x & =3 \\
x & =1
\end{array}
$$

The first of these is not really a solution, because it was found based on the premise of $x-3$ being positive which is not true for $x=-3$. As a result we really have only one solution. (Graph it on your calculator if you're not sure of this.)
Now test one of the two intervals delimited by this solution.

- $x<1$

Try a value, say 0 :
Is it true that $|0-3| \leq 2(0)$?
No ($3 \not \leq 0$).
Solution set is

$$
\{x \in \mathbb{R}: x \geq 1\}
$$

47. First solve $2 x-2=|x|$

$$
\begin{aligned}
& 2 x-2=x \quad \text { or } \\
& x=2 \\
& 2 x-2=-x \\
& 3 x=2 \\
& x=\frac{2}{3}
\end{aligned}
$$

The second of these is not really a solution, because it was found based on the premise of x being negative which is not true for $x=\frac{2}{3}$. As a result we really have only one solution.
Now test one of the two intervals delimited by this solution.

- $x<2$

Try a value, say 0 :
Is it true that $2(0)-2<|0|)$?
Yes $(-2<0)$.
Solution set is

$$
\{x \in \mathbb{R}: x<2\}
$$

48. First solve $|x|+1=2 x$. If you sketch the graph of LHS and RHS it should be clear that this will have one solution with positive x :

$$
\begin{aligned}
x+1 & =2 x \\
x & =1
\end{aligned}
$$

The LHS is clearly greater than the RHS for negative x so we can conclude that the solution set is

$$
\{x \in \mathbb{R}: x \leq 1\}
$$

49. Apart from having a $>$ instead of \geq this problem can be rearranged to be identical to the previous one, so it will have a corresponding solution set:

$$
\{x \in \mathbb{R}: x<1\}
$$

50. First solve $|x+4|=x+2$

$$
\begin{aligned}
x+4=x+2 & \text { or } \quad-(x+4) \\
\text { No Solution } & x+2 \\
-x-4 & =x+2 \\
-2 x & =6 \\
x & =-3
\end{aligned}
$$

The second of these is not really a solution, because it was found based on the premise of $x+4$ being negative which is not true for $x=-3$. As a result we have no solution. Graphically, the graphs of the LHS and RHS never intersect, so the inequality is either always true or never true. Test a value to determine which:
Try a value, say 0 :
Is it true that $|(0)+4|>0+2$?
Yes $(4>2)$.
Solution set is \mathbb{R}.
51. "*" must be > because we are including all values of x greater than some distance from the central point.

At the value $x=3$ we must have

$$
\begin{aligned}
|2 x+5| & =a \\
|2 \times 3+5| & =a \\
a & =11
\end{aligned}
$$

Then at $x=b$

$$
\begin{aligned}
-(2 b+5) & =11 \\
-2 b-5 & =11 \\
-2 b & =16 \\
b & =-8
\end{aligned}
$$

52. Since 3 is a member of the solution set, resulting in the LHS being zero, the smallest possible absolute value, the inequality must be either $<$ or \leq. Since we have a filled circle at the starting point we can conclude that "*" is \leq.
Point $x=5$ is equidistant between 3 and a (i.e. $|x-3|=|x-a|$ at $x=5$ so we may conclude that $a=7$.
53. First solve $|2 x+5|=|x+a|$

$$
\begin{array}{rlrl}
2 x+5=x+a & \text { or } & -(2 x+5) & =x+a \\
x=a-5 & -2 x-5 & =x+a \\
-3 x & =a+5 \\
x & =-\frac{a+5}{3}
\end{array}
$$

This gives us either

- $a-5=-2$ and $-\frac{a+5}{3}=-4$; or
- $a-5=-4$ and $-\frac{a+5}{3}=-2$

Only the second of these works, and we have $a=1$
The open endpoints exclude \leq and \geq and all that remains is to test a value between -2 and -4 to decide between $<$ and $>$.

$$
\begin{array}{rll}
|2(-3)+5| & * & |(-3)+1| \\
1 & * 2
\end{array}
$$

and we see that "*" is $<$.
54. (a) False. This equation only holds when x and y are either both positive or both negative. For example, consider $x=1, y=-2$: $|x+y|=1$ but $|x|+|y|=3$.
(b) False. This equation only holds when x and y are not both positive or both negative, and further when $|x| \geq|y|$. For example, if $x=1$ and $y=2,|x+y|=3$ but $|x|-|y|=-1$.
(c) False. For example, consider $x=1, y=-2$: $|x+y|=1$ but $|x|+|y|=3$.
(d) True for all real values of x and y.

Miscellaneous Exercise 1

1. distance $=\sqrt{(-3-2)^{2}+(7--5)^{2}}$

$$
\begin{aligned}
& =\sqrt{25+144} \\
& =13
\end{aligned}
$$

2. (a) $f(2)=5(2)-3$

$$
=7
$$

(b) $\mathrm{f}(-5)=5(-5)-3$

$$
=-28
$$

(c) $\mathrm{f}(1.5)=5(1.5)-3$

$$
=4.5
$$

(d) $\mathrm{f}(p)=5 p-3$
(e) $\quad \mathrm{f}(q)=-18$

$$
5 q-3=-18
$$

$$
5 q=-15
$$

$$
q=-3
$$

3. (a) $8=2^{3}$
(b) $64=8^{2}=\left(2^{3}\right)^{2}=2^{6}$
(c) $2^{3} \times 2^{7}=2^{3+7}=2^{10}$
(d) $2^{5} \times 16=2^{5} \times 2^{4}=2^{9}$
(e) $2^{10} \div 2^{7}=2^{10-7}=2^{3}$
(f) $2^{7} \div 8=2^{7} \div 2^{3}=2^{4}$
(g) $256 \times 64=2^{8} \times 2^{6}=2^{14}$
(h) $1=2^{0}$
4. (a) $5^{6} \times 5^{x}=5^{10}$

$$
\begin{aligned}
5^{6+x} & =5^{10} \\
6+x & =10 \\
x & =4
\end{aligned}
$$

(b) $\quad 27 \times 3^{x}=3^{7}$

$$
\begin{aligned}
3^{3} \times 3^{x} & =3^{7} \\
3^{3+x} & =3^{7}
\end{aligned}
$$

$3+x=7$

$$
x=4
$$

(c) $1000000=10^{x}$

$$
\begin{aligned}
10^{6} & =10^{x} \\
x & =6
\end{aligned}
$$

(d) $12^{9} \div 12^{x}=144$

$$
12^{9-x}=12^{2}
$$

$$
9-x=2
$$

$$
x=7
$$

(e) $2^{3} \times 8 \times 2^{x}=2^{10}$

$$
2^{3} \times 2^{3} \times 2^{x}=2^{10}
$$

$$
2^{3+3+x}=2^{10}
$$

$$
6+x=10
$$

$$
x=4
$$

(f) $\quad 0.1=10^{x}$

$$
10^{-1}=10^{x}
$$

$$
x=-1
$$

5. (a) $-5<x<5$
(b) True for all x (An absolute value is always greater than any negative number.)
(c) $-6 \leq 2 x \leq 6$ so $-3 \leq x \leq 3$
(d) No value of x satisfies this since an absolute value cannot be less than zero.
(e) True for points on the number line having a distance from 3 less than their distance from 9 , i.e. points nearer 3 than 9 . The midpoint of 3 and 9 is 6 so the values of x that satisfy the inequality are $x<6$.
(f) True for points on the number line nearer -1 than 5 . The midpoint is 2 , so $x<2$.
6. Refer to Sadler's solutions for the sketches. These comments briefly describe the operations that have been enacted to produce these sketches.
(a) Vertical reflection in the x-axis
(b) Horizontal reflection in the y-axis
(c) That part of the curve lying below the x axis is vertically reflected in the x-axis.
(d) That part of the curve lying to the left of the y-axis is replaced with a mirror image of the part lying to the right of the axis.
7. Each function is of the form $y=|a(x-b)|$ where a represents the gradient of the positive slope and b where it meets the x-axis. (It may be necessary to expand brackets if comparing these answers with Sadler's.)
(a) Gradient 1, x-intercept -3: $y=|x+3|$
(b) Gradient 1, x-intercept 3: $y=|x-3|$
(c) Gradient 3, x-intercept 2: $y=|3(x-2)|$
(d) Gradient 2, x-intercept -2: $y=|2(x+2)|$
8. (a) $f(3)=3(3)-2=7$
(b) $\mathrm{f}(-3)=3(-3)-2=-11$
(c) $\mathrm{g}(3)=\mathrm{f}(|3|)=\mathrm{f}(3)=7$
(d) $\mathrm{g}(-3)=\mathrm{f}(|-3|)=\mathrm{f}(3)=7$
(e) $\mathrm{f}(5)=3(5)-2=13$
(f) $\mathrm{g}(-5)=\mathrm{f}(|-5|)=\mathrm{f}(5)=13$
(g) The graph of $\mathrm{f}(x)$ is a line with gradient 3 and y-intercept -2 . The graph of $\mathrm{g}(x)$ is identical to that of $\mathrm{f}(x)$ for $x \geq 0$. For $x<0$ the graph is a reflection in the y-axis of the graph for positive x.
9. (a) The line lies above the curve for x between b and e (but not including the extremes): $b<x<e$.
(b) As for the previous question, but including the extremes: $b \leq x \leq e$.
(c) The line is below the x-axis for $x<a$.
(d) The line is above or on the x-axis for $x \geq a$.
(e) The quadratic is above or on the x-axis for $x \leq c$ or $x \geq d$.
(f) The quadratic is above the x-axis for $x \leq b$ or $x \geq e$.
10. Because a is positive the sign of $a x$ is the same as the sign of x and hence $|a x|=a|x|$. Similarly $|b x|=b|x|$.

$$
\begin{aligned}
& |b x|>|a x| \\
& b|x|>a|x|
\end{aligned}
$$

Because $|x|$ is positive we can divide both sides by $|x|$ without being concerned about the inequality changing direction. This is, of course, only valid for $x \neq 0$

$$
. b>a
$$

which is true for all x so we can conclude that the original inequality is true for all $x \neq 0$.

